

A Semantic Model for Complex
Computer Networks

The Network Description Language

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel

op vrijdag 23 april 2010, te 14:00 uur

door

Jeroen Johannes van der Ham
geboren te Breda.

Promotor: Prof. dr. P.M.A. Sloot
Co-promotor: Prof. dr. ir. C.T.A.M. de Laat

Overige Leden: Prof. dr. P.W. Adriaans
Prof. dr. ir. H. Bal
Dr. P. Grosso
Dr. H. Keus
Prof. dr. R.J. Meijer
Prof. dr. D. Simeonidou

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 194.

This research was supported by TNO, the Interactive Collaborative Information
Systems (ICIS) project, and the GigaPort project led by SURFnet.
The ICIS and GigaPort projects are funded by the Dutch Ministry of Economic
Affairs under grant numbers BSIK03024 and BSIK03020 respectively.

Copyright © 2010 by Jeroen van der Ham
This work is licensed under the Creative Commons Attribution 3.0 NL licence.
Cover design by Anneke Joosten © 2010
Typeset by LATEX. Printed and bound by your printer.
ISBN: 978-90-814160-2-3

http://creativecommons.org/licenses/by/3.0/nl/deed.en_GB

iii

Motto

‘Come, we shall have some fun now!’ thought Alice.
‘I’m glad they’ve begun asking riddles. – I believe I can
guess that,’ she added aloud.
‘Do you mean that you think you can find out the

answer to it?’ said the March Hare.
‘Exactly so,’ said Alice.
‘Then you should say what you mean,’ the March

Hare went on.
‘I do’ Alice hastily replied; ‘at least – at least I mean

what I say – that’s the same thing you know.’
‘Not the same thing a bit!’ said the Hatter. ‘You

might just as well say that “I see what I eat” is the
same thing as “I eat what I see”!’
‘You might just as well say,’ added the March Hare,

‘that “I like what I get” is the same thing as “I get what
I like”!’
‘You might just as well say,’ added the Dormouse,

who seemed to be talking in his sleep, ‘that “I breathe
when I sleep” is the same thing as “I sleep when I
breathe”!’
‘It is the same thing with you,’ said the Hatter, and

here the conversation dropped, and the party sat silent
for a minute [. . .].

From Alice’s adventures in Wonderland by Lewis Carroll.

iv

v

Contents

Contents v

1 Introduction 1
1.1 Computer Networks . 1
1.2 e-Science Applications . 2
1.3 Hybrid Networking . 4
1.4 Military Networks . 5
1.5 Management of Computer Networks 7
1.6 Research Overview . 8

1.6.1 Thesis Outline . 11

I The Network Description Language 13

2 Describing Computer Networks 15
2.1 Introduction . 15
2.2 Requirements for a Network Model 16
2.3 Information Models . 17

2.3.1 Comparing Information Models 20
2.4 Topology Descriptions in Routing Protocols 21
2.5 Data Models . 22

2.5.1 Introduction to the Semantic Web 22
2.5.2 Resource Description Framework 23
2.5.3 RDF Schemata . 25
2.5.4 Distributed Repositories 26

vi CONTENTS

2.5.5 Comparing XML and RDF 26
2.6 Conclusion . 28

3 The Network Description Language 31
3.1 Introduction . 31
3.2 Terminology for Computer Networks 32
3.3 The Network Description Language 34
3.4 Extending the Network Description Language 38
3.5 The Multi-Layer Network Description Language 41

3.5.1 NDL Topology Schema 41
3.5.2 NDL Layer Schema . 43
3.5.3 NDL Capability Schema 48
3.5.4 Domain Schema . 49
3.5.5 Technology Independence 49
3.5.6 Comparing NDL and GMPLS 51

3.6 Conclusion . 52

4 NDL Applications 55
4.1 Introduction . 55
4.2 Network Graph Generation . 56
4.3 Automatic Generation of Network Descriptions 57

4.3.1 Topology Generation for TITAAN 59
4.3.2 Topology Generation from OSPF-TE 59

4.4 Extracting Data from Network Descriptions 60
4.4.1 Lightpath Planning in SURFnet6 61
4.4.2 Lightpath Planning in GLIF 62
4.4.3 Lightpath Monitoring in NetherLight 63

4.5 Python NDL Toolkit . 65
4.6 Virtual Network Experiments . 65
4.7 Conclusion . 66

II Topology Aggregation in Multi-Domain Networks 69

5 Introduction to Network Topology Aggregation 71
5.1 Introduction . 71

5.1.1 Hierarchical Routing . 72

CONTENTS vii

5.2 Topology Aggregation . 74
5.3 Performance Evaluation of Topology Aggregation 75

5.3.1 Performance Evaluation Study by Guo and Matta 75
5.3.2 Performance Evaluation Study by Awerbuch et al. 76
5.3.3 Aggregated Topologies in Optical Networks 78

5.4 Summary . 80

6 Emulations of Aggregated Network Topologies 81
6.1 Introduction . 81
6.2 Aggregation Methods . 82

6.2.1 Formal Definitions of Topology Aggregation 83
6.2.2 Topology Aggregation from NDL Descriptions 85

6.3 Experimental Setup . 86
6.3.1 Generating the Graphs and Pairs 87
6.3.2 Pathfinding Using Aggregations 88

6.4 Results of the Emulations . 89
6.4.1 Fit Functions . 90
6.4.2 Domain Sizes . 92
6.4.3 Results on Inter-Domain Pathfinding 96

6.5 Discussion and Conclusion . 100

7 Summary and Conclusion 105
7.1 The Road Ahead . 107

7.1.1 RDF Infrastructure Descriptions 107
7.1.2 Topology Aggregation . 108

A Translation of OSPF to NDL 111

B Translation of OSPF-TE to NDL 121

C List of Abbreviations 133

List of Author’s Publications 137

Bibliography 139

Summary 149

Samenvatting 151

viii CONTENTS

Acknowledgements 153

1

Chapter1
Introduction

1.1 Computer Networks

Communication over computer networks is a very important part of our society
today: we make phone calls, send emails, and surf the web. All these processes
are enabled by the physical infrastructure of wires, and fibers in the ground,
combined with networking devices that communicate electronically over these
cables.

There are two different types of network services: packet and circuit switched
network services. To describe the difference we can make an analogy to traffic.
Packet switched networks are like regular highways that everyone can use, and
may encounter traffic jams. Circuit switched networks on the other hand are
more like dedicated highways between certain origins and destinations. Cars on
these dedicated highways may not drive faster, but it is guaranteed that they
do not encounter congestion.

The public switched telephone service is an example of a circuit based switch-
ing technology. The Internet on the other hand is largely based on packet
switched technology. Both technologies have their merits. Packet switched net-
works are very robust against failures, but can not guarantee a constant quality
of service.

More and more scientific research applications require better quality of ser-
vices than the regular packet-switched Internet can offer. Such applications may
produce so much traffic that if they use the regular Internet, they cause conges-

2 CHAPTER 1. INTRODUCTION

tion, fail to run smoothly and disrupt other Internet traffic. These applications
require dedicated network connections, such as the circuits in the above analogy.

Creating connections in a circuit-switched networks, and especially optical
networks, is a complex task. A complete end to end circuit must be created be-
fore the connection can be used. Provisioning such a circuit requires knowledge
of the network topology, capacities and capabilities.

This thesis describes the Network Description Language (NDL), an onto-
logy for describing complex network topologies and technologies. The language
defines a clear terminology for describing network topologies that can be linked
to other descriptions, to other kinds of resources, but also to other networks,
creating a distributed interoperable description of the global topology.

Network operators tend to be protective of detailed topology information,
because of scalability, security, or policy reasons. It is also possible to share an
aggregated view of the topology, so that only the most important details are
published. In part two of this thesis we examine what kind of effect aggregation
has on inter-domain pathfinding.

1.2 e-Science Applications
Scientific research has grown in step with faster computers and more ubiquitous
computer networks. In eScience it is now common to see experiments with very
large data-sets or requiring high speed or large amounts of bandwidth[8]. As
stated above, if these transmissions use the regular Internet, they can disrupt
other traffic. Some experiments do not require large bandwidth, but require
very controlled jitter and delay on the data transmissions. Below we provide
some examples where scientists use dedicated connections in optical networks,
lightpaths, for their experiments.

For example lightpaths are used by scientists to perform large-scale screening
for lung cancer[9]. Large, high resolution radiological images are transmitted
to a central repository. An expert can then access the repository and quickly
review the new and archived images to come to a diagnosis.

Besides sharing data sets, scientists can also use the network to share spe-
cialized equipment such as electron microscopes[10]. With high-speed optical
networks such a microscope can be connected to the network, and scientists can
remotely control the microscope and view the results real-time.

An extreme example of a specialized instrument is the Large Hadron Collider
(LHC) at CERN. Once operating, the experiments in this particle acceler-
ator will generate over 300 GByte/s of data, which is filtered locally to about

E-SCIENCE APPLICATIONS 3

300 MByte/s. This data is then immediately globally distributed to 10 Tier 1
institutes through dedicated optical connections. These institutes distribute the
data further to Tier 2 institutes. Together these Tier 1 and 2 institutes form
the Worldwide LHC Computing Grid[11, 12] where the data of the experiments
is stored and analysed.

Distant
quasar

Radio telescope

Radio telescope

Baseline

Correlator

Network

Figure 1.1: Schematic diagram of e-VLBI (Image courtesy of F. Dijkstra[13])

Another e-science application that requires dedicated network connections
is Very Long Baseline Interferometry (e-VLBI). Two or more radio telescopes,
that are far apart, pick up signals from the sky, as shown in picture 1.1. The
received data is directly sent to a correlator for processing. The resolution of
the correlated signal improves with the distance between the telescopes. Ideally,
the telescopes are located on different continents.

Historically, data is shipped on tape from the telescopes to the correlator.
Experiments in 2004 have shown that the data can be transmitted over net-
works [14, 15, 16]. Transmitting this data in real time requires a bandwidth
of 1 to 10 Gbit/s. Since the raw measured signal is nearly white noise, it can
not be compressed. Typical observation times for telescopes are in the order
of several hours. Depending on what astronomical source is being observed,
e-VLBI observations use different sets of telescopes.

4 CHAPTER 1. INTRODUCTION

The StarPlane project[17] provides researchers a dynamic network topo-
logy for computing. The StarPlane network connects together the five different
clusters of the DAS-3[18] distributed supercomputer. This network is a dedic-
ated part of the SURFnet6 network. The topology interconnecting the clusters
can be dynamically changed, optimising the configuration for the demands of
the application being run on the distributed supercomputer.

Dynamic high-speed connections also provide a way to quickly migrate vir-
tual machines to other locations[19]. At SuperComputing 2007 it has been
shown that virtual machines can quickly be migrated between different sites
using lightpaths with minimal downtime of the virtual machine: in the order
of 1–2 seconds. This migration can for example be used to migrate the com-
putation to the data set instead of vice versa, or to conserve energy or carbon
footprint.

In reality creating such a dedicated network connection is a long process
with multiple parties involved. The scientist, his provider network, possible
intermediate networks and the destination network all have to agree on the
characteristics and details of the connection. The connection is then manually
configured by experienced operators in each of the networks. The characteristics
and progress on the configuration are then communicated through phone and
email. We examine these steps more closely in section 1.6.

The process of creating a network connection can be improved by having
a clear and well-defined description of the network. This allows all the parties
involved to clearly express their requests and intentions. Having such a language
that can also be processed by applications is a first step towards automating
this procedure.

1.3 Hybrid Networking
The idea of providing e-science applications with deterministic point-to-point
connections was fostered by a community of research networks, later organ-
ised in the Global Lambda Integrated Facility (GLIF)[20]. This community
provides a global network to support data-intensive scientific research, and also
supports middleware development for optical networking. The ideas in this com-
munity led to the concept of hybrid networking , the offering of packet switched
(IP) services and circuit switched connections over the same physical network
infrastructure[21].

Since most e-science applications operate in a large scale environment, with
collaborators at different universities, the networks required for these applica-

MILITARY NETWORKS 5

Figure 1.2: GLIF world map of May 2008, with all network connections offered
by its participants. Source: Patterson, Brown [22].

tions are nearly always multi-domain networks. De Laat estimated in 2000 that
a typical network connection for a physics experiment crosses seven domains [23].
To achieve inter-domain operation, the different networks have to collaborate.
For dedicated network connections, this collaboration is done in the GLIF com-
munity. In few years time a number of international network connections have
been established to provide the inter-domain connectivity. Figure 1.2 shows a
collection of the interconnections provided by partners in the GLIF community
as of May 2008.

The GLIF community is working hard at improving the lightpath provision-
ing process by exchanging experiences, documenting processes and developing
middleware.

1.4 Military Networks

A large part of the research described in this thesis was performed at TNO, the
Dutch Research Laboratory[24], where we also observed a similar complexity
in the management of military networks. The military is moving towards more
and heavier use of computer networks through network enabled capabilities
(NEC)[25]. This way of operating intends to enhance military effect through

6 CHAPTER 1. INTRODUCTION

Static
Homeland Network

Mobile
Command Post

Camp Network

Figure 1.3: The abstract architecture of the TITAAN network

better use of information systems. The data from these information systems
must be distributed in order to create a shared awareness among the participants
in the operations. The goal is to have the right information at the right place
at the right time.

The communication network is a key component in achieving the goal of
true network enabled capabilities. It is important that all the actors involved
have a clear understanding of the capabilities and state of the network. The
network can then be used as optimally as possible, given the current situation
and possibilities.

An example of such a military network is TITAAN[26], the Theatre Inde-
pendent Tactical Army & Airforce Network. It is a robust network, configured
in such a way that it can be packed up and deployed quickly, anywhere in the
world. The network can then be used to exchange data, email, telephone and
video-conferencing.

Figure 1.3 shows a high-level abstract view of the TITAAN network. On the
left side is the fixed tactical network in the Netherlands. In the middle and right

MANAGEMENT OF COMPUTER NETWORKS 7

there are mobile command-posts, or bases. Each has a local network. These
networks are connected either through radio, satellite, or fixed links.

Currently the TITAAN network operates independently, but the global trend
is that military operations are multi-national operations. Combined with the
trend towards more network enabled capabilities, we see that nations are trying
to create tighter couplings between their networks. In order to make full use
of these networks specific information about the network topologies and its
properties must be exchanged.

1.5 Management of Computer Networks
Before we present the research overview, we first describe the current archi-
tecture for management of computer networks. Figure 1.4 shows a schematic
overview of this architecture.

Management
Plane

Data Plane

Figure 1.4: The management plane (top) and the data plane (bottom).

At the bottom is the data plane. This is the physical network over which the
signals are sent using data communication protocols, electric or optical pulses.
The data plane takes care of moving the data from source to destination. Ex-
amples of data plane implementations are Ethernet, TCP/IP, or fiber infra-
structure.

The control plane is used by the network to manage the topology of the data
plane. The routers and switches in a network communicate over the control

8 CHAPTER 1. INTRODUCTION

plane with routing and switching protocols in order to get an overview of the
data plane topology. The control plane is not shown in the figure, as it can either
be implemented as a small dedicated part of the data plane (in-band), or as an
independent network (out-of-band). Examples of control plane protocols are
the Spanning Tree protocol (STP) and the Open Shortest Path First (OSPF)
protocol, which we will discuss in more detail later.

Finally there is the management plane, which is used by the network engin-
eers and operators to manage and monitor the network. The management plane
can use the control plane network, or a separate network. Examples of manage-
ment plane protocols are Simple Network Management Protocol (SNMP) and
NetConf. Vendors of networking equipment often also have separate manage-
ment software which is used to monitor and manage the network. Examples of
these applications are HP Openview[27] or Nortels DRAC[28].

Note that the management planes of different networks are shown separated
in the figure above. Detailed topology or management data of different net-
works is not shared between them. Some limited information exchange between
networks happen so far as it is required for the operation of the network, for
example the announcement of prefixes and connectivity to other Autonomous
Systems in case of the Border Gateway Protocol (BGP)[29].

1.6 Research Overview
The goal of our research is to provide a first step towards automatic pathfinding
and provisioning of inter-domain lightpaths. Figure 1.5 shows the steps that
currently need to be taken to establish a network connection for any e-science
application, in this example between a radio telescope and a correlator. If we
examine this procedure in more detail, we see that it is broken up in the following
underlying steps:

1. The user formulates the requirements, including the end points and the
network characteristics like bandwidth, latency, jitter, minimum packet
size (if applicable), reliability, etc.

2. These requirements must be communicated to their upstream network
provider, in our case the national research and education network (NREN).

The network provider must gather information about available resources,
including the resources in other networks, as the two end-points are typ-
ically in different networks.

RESEARCH OVERVIEW 9

5

4 4 4

3
32

1

Network
Provider

Network
Exchange

Network
Provider

Radio
astronomer

Radio
astronomer

Figure 1.5: Steps required to set up a network connection between a radio-
telescope and correlator.

3. The network provider must, in collaboration with the other network pro-
viders, determine a valid path that uses available resources, and is within
the specs of the user.

The resources needed for the path must be reserved in all networks in-
volved.

4. Once the reservations are all confirmed, the reserved resources must be
configured in the networks.

The end-to-end path must be tested, and in case of faults the faults must
be examined and resolved.

The network provider informs the user, and the user must configure the
end nodes (e.g. configure the IP addresses and set the routing table).

5. The user runs the applications.

Currently, this whole process of acquiring a (working) lightpath across mul-
tiple domains can take several weeks, a lot of emails and phone calls and ex-
tensive testing. It is clear that the whole process needs to be improved and
automated in order to scale.

The first step is where the user formulates his requirements. Users can
have very different use-cases for lightpaths. For example, a user who wants
to do live video streaming has very different requirements than a user who
wants to transfer a very large data set. Often users do not know which basic
settings they need, or are not able to communicate these clearly to the operator.

10 CHAPTER 1. INTRODUCTION

Sobieski and Lehman have proposed ‘Common Service Definitions’ [30], a set of
common services with associated values for common parameters for lightpath
performance. These definitions make it easier for users to pick the right values.
The requirements are also clear to the network operators, allowing them to
provide a measurable and reproducible service.

Fault detection and isolation are processes that often occur when operators
are trying to bring up a new lightpath. Pure optical sections are hard for fault
isolation, it is easy to detect that no light is coming through, but very hard to
isolate the section where the light is stopped. Of course faults can also occur
during normal operation. Good communication between domains is required for
being able to detect and isolate problems. The GLIF community is currently
working on this problem[31] by introducing inter-domain lightpath identifiers to
facilitate communication between domains[32].

One of our students has studied the problem of fault-detection and isolation
in optical networks[33]. This study provides an analyses of the problem and
proposes an expert system that can help users and administrators to detect and
isolate problems.

If we examine the intermediate steps taken by the network operators, 2–4
in Figure 1.5, then it becomes clear that this involves a lot of communication
between the operators. In order to determine a path, they have to exchange
topology and capability information. Once a path has been determined an op-
erator must communicate the specifics to the other operators involved. This
process is hampered by the lack of an interoperable way of describing and ex-
changing network topologies.

The first research question of this thesis is the following: Is it possible to
create a distributed information model for the description of topologies and tech-
nologies for inter-domain pathfinding?

When answering the above research question, I assume complete openness
about network topologies. The goal is to provide an information model that is
as complete as possible.

However, network operators do not always want to provide a full description
of their topology, for example because of scalability, or security reasons. A
solution for this is to apply topology aggregation, publishing only an aggregated
view of the network topology of a domain. However, leaving out information
means that pathfinding will not always find the optimal path.

It should be noted that in some cases aggregation of graphs can be reversed,
by using directed queries. The original graph can then be inferred from the
aggregated topology and the responses. However this is hard to do because the
original graph changes due to provisioned connections, and the management

RESEARCH OVERVIEW 11

system of the network could also detect this behavior and either stop answering
or provide misleading answers.

When requesting a path based on an aggregated topology, it is also possible
that a path is found in the aggregated graph, which turns out not to be available
in the actual network. With that in mind, in the second part of this thesis, I
answer a second research question: What impact does topology aggregation have
on inter-domain pathfinding?

1.6.1 Thesis Outline
The rest of this thesis is structured as follows.

Chapter 2 reviews the basic ideas of network information and data models.
We examine the current state of the art, and discuss related research.

Part I describes the Network Description Language:

Chapter 3 presents our information model, the Network Description Lan-
guage, and the reasoning behind the design decisions that we have
made to come to this model.

Chapter 4 validates our model by implementing components in the con-
text of real life networks. It further discusses the strengths and lim-
itations of our approach.

Part II examines the aggregation of network topology, and the impact of ag-
gregation on pathfinding:

Chapter 5 presents different ways of aggregating network topologies, and
discusses related work.

Chapter 6 describes the experiments that we performed to determine
the impact of aggregation on pathfinding.

Chapter 7 summarizes the overall research work presented in this thesis, and
answers to the research questions.

12

13

Part I

The Network Description Language

14

15

Chapter2
Describing Computer Networks

2.1 Introduction

In the previous chapter we have shown that a main problem for requesting
lightpaths or managing complex networks is the lack of topology descriptions.
In this chapter we provide an overview of the current approaches to describing
computer networks. It is important to note that any description requires two
kinds of models[34]: information models that describe resources at a concep-
tual layer, and data models that describe protocol and implementation details.
Obviously there is a relation between data models and information models, as
a data model implements an information model. A relation can also exist the
other way; if a certain data model is preferred, then this can impose limitations
on how the information model is expressed.

The rest of this chapter is organised as follows: in section 2.2 we first look
at the requirements of network descriptions in light of our research question.
With these requirements, we review existing information models for computer
networks in section 2.3. We show that none of the existing information mod-
els provide a good solution to our problem. In section 2.4 we examine other
approaches that are used in routing protocols.

Before moving onto chapter 3 where we introduce our own information
model, we look at possible data models, and provide a brief introduction to
Resource Description Framework and the Semantic Web in section 2.5. We
summarize and conclude our overview of information and data models in sec-

16 CHAPTER 2. DESCRIBING COMPUTER NETWORKS

tion 2.6.

2.2 Requirements for a Network Model
In the previous chapter we have shown that there are several steps involved
in getting a lightpath. The whole provisioning process goes from submitting a
clear request to a network provider, distributing the request to other networks,
to testing and delivering the lightpath. Currently automating the process of
requesting and creating a lightpath is hampered by the lack of network topology
descriptions.

A model for network topology descriptions for a global optical network must
fulfil the following requirements:

Concise The network model must provide a clear description of the network
topology, and all the nodes involved. The definitions of elements must be
clear to all the actors involved.

Interoperable There are different vendors for control plane software, which
are mostly incompatible. The network descriptions must be in such a
form that they can easily be parsed by applications.

Distributed The global network consists of a large number of domains, each
managing its resources. Each domain must be able to maintain their own
descriptions, and information should stay with its owner. The descriptions
should somehow link to each other to form a description of the global
network.

Portable Network descriptions will be exchanged between different domains,
which means that the model must make use of portable identifiers, which
are suitable for use in a global context.

Extensible The model must allow for easy extension or combination with de-
scriptions of other resources. The networks are only vehicles for trans-
porting data. The true value of the network is through the services that
are provided at the edges, such as compute services, instruments, or data
storage.

Human Readable Currently the process of provisioning lightpaths is done
mostly manually. Because of the many parties involved, there will be a
transition period where some domains are still provisioned manually, while

INFORMATION MODELS 17
N
am

e

D
at
a
M
od

el

E
xp

re
ss
iv
it
y

P
or
ta
bi
lit
y

A
ct
iv
it
y

H
um

an
R
ea
da

bl
e

St
an

da
rd
s

B
od

y

SNMP ASN.1 - - dormant - IETF
NetConf XML + + active + IETF
CIM XML ++ + active + DMTF

GMPLS OSPF
LSAs

+ - active - IETF

NM-WG XML + + active + OGF
cNIS SQL + - active + –
G.805 - ++ - low + ITU-T

Table 2.1: Feature comparison of information models, for details and abbrevi-
ations see section 2.3.

others are automated. The descriptions should be human readable or tools
should be provided to easily visualize them.

2.3 Information Models
In this section we provide an overview of current information models that are
in use for describing network topologies. Table 2.1 shows different information
models, along with their data models. The table also scores different features
of the information and data models. However, not all requirements given in the
previous section are easily quantifiable, so we discuss each of the information
models in more detail below.

SNMP The Simple Network Management Protocol1[35] is a set of standards
describing a protocol, a database schema, and data objects. The whole suite was
originally created as a way of both monitoring and managing network resources.
In current networks it is mostly used only for monitoring purposes. Diagnostic,
performance and configuration information of network devices can be retrieved
from the Management Information Base (MIB) of devices. The MIB is a tree

1Technically, the information model is formed by the MIBs, Management Information
Bases, and SNMP denotes the whole set: protocol, information and data model.

18 CHAPTER 2. DESCRIBING COMPUTER NETWORKS

of name, value pairs, which can be requested and changed. A large part of the
MIB is standardised, but vendors also have their own part of the tree. This
vendor space is used to store most configuration and performance data of their
devices in a proprietary format. Almost all networking devices support SNMP,
with different levels of detail in their MIB.

The network description provided by SNMP is distributed over the devices.
Depending on the layer the device is operating on, it may have a pointer (address
or identifier) to its neighbours on that layer. A view of the whole topology can
be created by combining the information gathered from all the devices.

NetConf The Internet Engineering Task Force (IETF) is currently working to
replace SNMP with a new standard, NetConf[36]. While SNMP uses its own
protocol and only allows for three data-types (integer, string, sequence) , Net-
Conf uses XML, allowing for any data type. Netconf defines a way of transport-
ing monitoring data and change requests over standard protocols, SSH, BEEP
or SOAP. NetConf is aimed at distributing diagnostic, performance and con-
figuration information, but also managing devices. NetConf is currently being
introduced in networking devices.

As NetConf follows similar principles as SNMP, the network description
provided by NetConf is similarly distributed over the managed devices. Each
device will have information about the neighbour it connects to on the layer it
operates on. The network topology can be created by combining the information
of the devices in the network.

CIM Another network device information model is the Common Information
Model, CIM[37]. It is being developed by the Distributed Management Task
Force (DMTF)[38] and it is an object-oriented information model described us-
ing the Unified Modelling Language. The model captures information regarding
computer systems, operating systems, networks and other related diagnostic in-
formation. CIM is a very broad and complex model, the current UML schemata
of the network model is almost 40 pages, the total model is over 200 pages.

DMTF has defined a mapping from CIM to XML, which is mainly used
in Web-Based Enterprise Management (WBEM). WBEM is mainly implemen-
ted in enterprise-oriented computing equipment, and operating systems such
as Windows and Solaris. The high expressiveness in CIM combined with the
very active development is to us a negative property. There have been many
significant changes in the infrastructure part of CIM over the past two years.

INFORMATION MODELS 19

GMPLS GMPLS, Generalized Multi-Protocol Label Switching[39], is a protocol
suite developed by the IETF for the provisioning and management of label-
switched paths through multi-technology networks. It provides a unified control
and management plane for the management of multi-layer networks. Network-
ing devices use the Open Shortest Path First Traffic Engineering (OSPF-TE)
protocol to exchange topology data with their neighbours. Devices broadcast
the received topology data to their other neighbours, so that in the end all the
devices in the domain have the same view of the network topology. The IETF
is currently trying to extend GMPLS towards the inter-domain environment.

The topology data in OSPF-TE is exchanged in Link State Announcements
(LSAs) packets. The topology data contained therein is encoded in a com-
pact byte format, using specifically defined header fields and Type-Length-Value
(TLV) containers. This format is aimed at being easy to process and store for
participating network devices, but it is hard to export to external applications.

NM-WG The Network Measurements Working Group (NM-WG) of the OGF
has also developed a way of representing network topologies[40, 41]. The NM-
WG schema can describe network topologies as used in network measurements.
They have created an XML schema, used in several network measurement and
assessment tools. Descriptions in this format are for example used by the per-
formance measurement tool PerfSONAR[42]. This tool can collect information
and parse output from other tools, and expresses the resulting information in
XML. This allows for easy exchange of topology data with other tools.

cNIS cNIS[43] has been developed in the GÉANT2[44] project as a way to
store topology information of a single domain. This information is collected
and stored by different components such as the perfSONAR measurement tool,
the AutoBAHN[45] provisioning tool and others. The model is defined in UML
and the tables of the database. The cNIS server can provide the data in different
formats towards the different tools. cNIS has a very detailed information model
allowing it to describe single domain topologies on different layers. This model
has also been brought into the NML-WG. The current plans are that once the
NML-WG produces a standard model cNIS will move towards a unified interface
for all network tools using that model.

G.805 G.805 is an information model defined by the ITU-T to describe end-to-
end connections through a multi-technology network. It is a model to describe
the theoretical foundation of network technologies and relations between them.

20 CHAPTER 2. DESCRIBING COMPUTER NETWORKS

As such, G.805 only has a graphical data model. We will come back to the
G.805 model in section 3.5.

NML-WG In 2007 the Network Markup LanguageWorking Group (NML-WG)[46]
was formed in the OGF. This working group has taken the topology schema of
NM-WG, the Network Description Language and other schemata as input to
define a new schema specifically for describing multi-layer network topologies in
a broader application area.

2.3.1 Comparing Information Models

If we examine the requirements that we stated in section 2.2, and compare this
with the available information models, then we have to conclude that none of
the information models fulfil all requirements. The first three information mod-
els summarised above are aimed at describing diagnostics information. NetConf
and CIM are also aimed at the configuration management. These three in-
formation models are therefore aimed to inform the direct operators of those
machines, and the topology part of the models are aimed at that context. The
models only describe neighbour information, which makes it hard to describe a
complete network topology with it.

The GMPLS information model is aimed at a very different public, namely
the switches and routers themselves. The data model is aimed at compactness
and is therefore not easy for other applications to understand, nor is it human
readable. Unlike the first three information models, GMPLS is aimed at purely
describing network topologies, so we take the information model of GMPLS into
account, see also section 3.4.

The NM-WG and cNIS information models are aimed at both human and
computer consumption. The goal of the models is to publish and share network
measurement data along with topology data of those measurements. These
measurements are stored in a database so that historical performance data is
preserved. The main aim of the NM-WG data model is to relate it to the
performance data. So it is not directly suited to create distributed domain
descriptions. Nonetheless, the NM-WG model is a very good fit to our problem
and is one of the important base models in the new NML-WG.

TOPOLOGY DESCRIPTIONS IN ROUTING PROTOCOLS 21

2.4 Topology Descriptions in Routing Protocols

In the previous section we have examined protocols and information models for
describing computer networks. There are also other approaches to routing traffic
and circuits in networks which do not require a complete overview of the network
topology. For example routing in the backbone of the Internet is managed using
the Border Gateway Protocol (BGP)[29, 47], and call routing in circuit switched
telephone networks is handled with SS7 (Signalling System #7)[47].

BGP is the routing protocol used in the core routers of the Internet. Net-
works attached to these routers are identified using Autonomous System (AS)
numbers. The exchanged topology information is defined with AS-paths for IP
network prefixes. Reachability information that is published in BGP often does
not travel through the whole network. A specific path can be aggregated to-
gether with other prefixes, saving space in the routing table. Another option is
that prefix announcements are filtered out, when the same prefix can be reached
through another way, or because of policy reasons. The limited topology inform-
ation is very suitable for packet-switched networks, but not directly applicable
to circuit-switched networks.

There has been an effort to attempt to combine optical networking with BGP
called Optical BGP (OBGP)[48]. It uses virtual routers to exchange reachab-
ility information on behalf of optical cross connects (OXC). There are some
difficulties with these approaches, most users of current lightpaths do not use
public IP space, they are often on separate networks, which are temporarily
connected to other resources. This makes it hard to announce the connectivity
with prefixes. Another difficulty is that the technology used in the optical con-
nectivity is relevant for the whole path construction, and it is not possible to
encode this information in the OBGP announcements.

A completely different approach can be seen in telephony networks. Histor-
ically these circuit-switched networks have worked without or with very limited
topology information. SS7 is the routing protocol currently used in telephony
networks. Routing is performed in a distributed hierarchical fashion, based on
dynamic lookups and default routes. This approach is feasible in telephone net-
works, because the network is provisioned and configured in such a way that
blocking within the network is not very likely to occur. Such an approach is not
applicable to optical networks, where blocking can easily occur.

22 CHAPTER 2. DESCRIBING COMPUTER NETWORKS

2.5 Data Models
In section 2.2 we have shown that key requirements are interoperability and
exchanging data between different parties. This makes it very important that
we have a common, interoperable data model. All of the existing models we
described in section 2.3, except the NM-WG model, are not suitable for distri-
bution outside domains.

The information models used in routing protocols as described in section 2.4
are suitable for inter-domain distribution. However, these models have been
specifically designed for the networks they are used in, and can not be applied
without major modifications to optical networks.

The interoperability and suitability for exchange are mostly properties of the
data model. Currently the lightpath provisioning is still done mostly by hand, so
we also prefer a data model which is human readable or can be easily visualised,
to help the transition towards full automation. There are many data models
available, ranging from just plain text to complex binary serialized objects.

Most data models currently in use for computer networks and network man-
agement are aimed at information on a single layer. They are typically trans-
ported either by a dedicated protocol, or adapted to fit into header space of
data packets. Needless to say, these data models are not very portable outside
their subnets or protocols.

A standard data model that supports human-readability and interoperability
is XML. Since a few years however, there is another data model gaining pop-
ularity: the Resource Description Framework (RDF). RDF has been developed
by the W3C to support the idea of the Semantic Web.

We assume that the reader is familiar with XML[49, 50]. Below we provide a
short introduction to the Semantic Web and RDF, before proceeding to compare
RDF with XML.

2.5.1 Introduction to the Semantic Web
The World Wide Web has allowed us to publish and share documents and
information with other people in the world. However, because the web is so
popular and widespread, it has almost become the victim of its own success.
Because of the large scale and the abundant availability of data, it becomes
very hard to find what we want. Search-engines, such as Google or Yahoo, have
come to the rescue and have indexed the data. However, computers still have
no common sense, so the search capabilities of the search machines are rather
limited. Consider for example the following two sentences:

DATA MODELS 23

• A is connected to B.

• There is a connection between A and B.

Even humans can differ in opinion whether these two sentences have the
same meaning. So there is no way that a computer without common sense
will understand that these two lines mean the same thing. This is where the
Semantic Web comes to the aid of computers (and people). The following is an
excerpt of the activity statement of the Semantic Web initiative [51]:

The goal of the Semantic Web initiative is to create a universal me-
dium for the exchange of data where data can be shared and processed
by automated tools as well as by people. For the Web to scale, to-
morrow’s programs must be able to share and process data even when
these programs have been designed totally independently.

In 2000 the Semantic Web initiative was started by the World Wide Web
Consortium (W3C). Since then they have been working on several specifications
to publish and share (meta)data, including the Resource Description Framework
(RDF) [52] and SPARQL [53]. In the following section we provide a brief intro-
duction to RDF.

2.5.2 Resource Description Framework
In order for two computer programs to communicate there must be a common
understanding about the vocabulary being used. Currently most communication
by computer programs is defined by protocols. The form of the interaction is
fixed, but the meaning of the data being exchanged is not.

Take a web-browser for example: when a user types in a URL, the web-
browser starts communicating with the designated server, asking for the resource
identified by the URL (‘GET’). The server then answers the browser with the
designated file. This interaction is strictly defined in RFC 2616[54]. But neither
the web-browser nor the server know what kind of data is being exchanged, it
could be about the weather, traffic information, etc.

Because in this example the applications do not grasp the meaning of the
data being presented, it limits the possibilities to mere presentation. The Se-
mantic Web idea originated as a solution to this problem; it tries to make it
easier for computers to understand the meaning of the content they present,
so that they can navigate autonomously through this information to find what
they are looking for.

24 CHAPTER 2. DESCRIBING COMPUTER NETWORKS

The Resource Description Framework has been created to describe things in a
meaningful way for computers. It provides a common framework for expressing
metadata so that it can be exchanged between applications without loss of
meaning.

Information in RDF is expressed as statements. Each statement is a triplet,
with the following elements:

Subject The resource being described

Predicate The property of the subject that is described

Object The value of the property for the subject

A set of triplets is called a graph. An object can also be the subject of
another triplet, so complex graphs can be created. An example of such a graph
is shown in figure 2.1. An example triplet in the graph is ‘Thesis creator
Jeroen’, with the subject, predicate and object respectively. The graph also
contains other triplets providing more information about the object Jeroen,
such as his name, email address and homepage.

Thesis Jeroen van der Ham

http://www.science.uva.nl/
~vdham/

"van der Ham"

"vdham@uva.nl"

creator

family name
email

homepage

Figure 2.1: A simple RDF graph

The graph shown in figure 2.1 still has a problem; we have provided an
abstract way of defining relations, but we still use plain English as labels for
identifying these relations. Consider for example the author relationship, we
could also have expressed this as creator without much loss of meaning to
human readers. RDF solves this terminology problem by using Uniform Re-
source Identifiers (URIs)2. Related terms are usually defined using the same

2A URL is one kind of URI. See also [55].

DATA MODELS 25

URI-prefix, taking the form of XML namespaces. See for example the Dublin
Core Metadata Initiative[56].

There are several ways of expressing RDF graphs, one is the graphical form
as in figure 2.1. The most common textual form is RDF/XML [57], where
the graph is encoded in an XML format. Throughout this thesis we use the
RDF/XML notation, which allows us to leverage tools for XML as well as RDF.

2.5.3 RDF Schemata
An example of using semantics with data is the Friend of a Friend project[58].
Participants of this project describe themselves, giving their name, homepage,
place of work, etc. The properties are predefined to make sure there is no conflict
with e.g. using ‘last name’ versus ‘surname’. But definitions of terms is not
enough for computers: is ‘surname’ the same as ‘Surname’? An example of a
FOAF description is given below.

1 <foaf:Person rdf:nodeID="#me">
2 <dc:creator rdf:resource="http://www.science.uva.nl/~vdham/thesis/">
3 <foaf:family_name>van der Ham</foaf:family_name>
4 <foaf:mbox>vdham@uva.nl</foaf:mbox>
5 <foaf:homepage rdf:resource="http://www.science.uva.nl/~vdham/"/>
6 </foaf:Person>

Listing 2.1: The RDF/XML representation of the semantic graph in figure 2.1

Listing 2.1 describes the semantic graph of figure 2.1 in RDF/XML format.
The properties in the example are defined using XML namespaces for readability,
they actually point to specific URIs with a well-defined meaning. For example
the creator property is defined by the URI http://purl.org/dc/elements/
1.1/creator, which is defined by the the Dublin Core Initiative [59]. When
defining RDF properties, it is possible to define what kind of types are valid as
subject and object. The set of valid subjects is called the domain, and the set
of valid objects is called the range of that property.

The other terms are either from the rdf namespace to describe standard
RDF types and objects, or the foaf namespace, which provides definitions for
the Person class, and basic properties of that class. Note that the homepage
relationship points to a URL, but in this case it is also treated as an RDF
object. This homepage object can then have other properties, such as a creator
property.

An XML namespace with definitions of related terms is called an RDF
schema. RDF schemata define the URIs and properties of RDF classes and
RDF predicates. RDF classes define the types of subjects and objects.

26 CHAPTER 2. DESCRIBING COMPUTER NETWORKS

1 <foaf:Person rdf:nodeID="#me">
2 <foaf:knows>
3 <foaf:Person>
4 <foaf:name>Freek Dijkstra</foaf:name>
5 <rdfs:seeAlso rdf:resource="http://staff.science.uva.nl/~fdijkstr/foaf.

rdf"/>
6 </foaf:Person>
7 </foaf:knows>
8 </foaf:Person>

Listing 2.2: Example of linking descriptions.

2.5.4 Distributed Repositories
So far we have described how to create local descriptions. However, the Friend of
a Friend project as described above is aimed at creating a distributed network
of people descriptions. Each person publishes his own description, and links
that with descriptions of other people. In RDF the seeAlso statement is used
to create these pointers. See for example listing 2.2, which extends the earlier
example.

Line 1 is the same as in listing 2.1, defining that the description of this
person is about me. Line 2 defines that I have a knows relation with the Person
object given in lines 3 to 6. In this case we do not provide an identifier of that
object, but rather give a description of it. Line 5 points to another description
file which contains more information about this object.

2.5.5 Comparing XML and RDF
Now that we have introduced RDF, we examine some differences between RDF
and XML. The most important features in a multi-domain distributed descrip-
tions context are the flexibility of the syntax, how object identifiers are created,
how distributed descriptions can be handled, and extensibility.

XML stands for extensible markup language, and ordinary XML syntax
is completely extensible, anything is allowed, as long as it is well-formed. This
changes dramatically once schemata are defined for documents. These schemata
are by definition restrictive.The schema must explicitly define places where ex-
tensibility is allowed. If external schemata are used for extensibility, then often
an explicit version of that schema is chosen. XML schemata in itself do not
contain versioning information. Currently, it is common practice to embed the
version number in the name or URL of the schema. If an external schema is

DATA MODELS 27

used to define some limited extensibility, then to use a new version, the original
schema must also be updated.

RDF schemata take a different approach than XML schemata: rather than
restrictively defining the structure of a (sub)document, RDF schemata define
object classes and properties, and how they can be combined. This means that
one document can use many schemata, and also that a single object can have
properties defined in different schemata without depending on each other. This
also means that when a new version of a certain schema is released, then only
the documents need to be updated, since schemata tend not to point directly
to other schemata.

The difference in the way schemata are defined also shows when we examine
what kind of structures can be described using XML or RDF. In RDF an object
is identified using its identifier, which makes it possible to define a flexible
graph containing loops. XML on the other hand defines a tree structure, and
uses that tree to define relations between objects. This means that it is not
straightforward to describe a graph containing loops.

The identification of objects is also a strong feature of RDF. Objects must
be identified using a URI, and it is common practice to use the URL of the
document as part of that URI. This makes it very easy for authors to ensure
global uniqueness of identifiers, which is an important aspect in a multi-domain
environment. In XML there is no restriction on what kind of identifiers can be
used, and it is not straightforward to create globally unique identifiers. It is
also not possible for XML schemata to define restrictions on identifiers, so this
must be defined externally.

Creating distributed descriptions is possible with both XML and RDF. In
XML it is possible to link documents using XLink[60], or by defining links
yourself. On the other hand in RDF the linking between descriptions is a built-
in feature using seeAlso statements as described earlier. Unfortunately, there
is little library support for either XLink or seeAlso, so parsers will have to
implement this.

In terms of verbosity, XML has an advantage over the XML syntax of RDF.
In our experience, RDF/XML is about twice as verbose as XML. It should
be noted that RDF models can also be described using other more compact
syntaxes, such as N3. These syntaxes are also supported by almost all RDF
tools and libraries.

Another important difference is that RDF imposes some restrictions on the
information model. When defining a schema for RDF, that is a mapping of the
information model to the data model, a complete ontology has to be defined.
This means that every element must be given a well-defined meaning. This is

28 CHAPTER 2. DESCRIBING COMPUTER NETWORKS

both an advantage to the schema author, who is forced to clearly define context
and meaning for every single element, as well as for users, who may use the
meaning to leverage the information on the semantic web.

2.6 Conclusion
In this chapter we have given an overview of the features of existing, well-known
information models for describing computer networks. The first three informa-
tion models we discussed, SNMP, NetConf and CIM, are aimed at diagnostics
and configuration management. The information models of NM-WG, and G.805
are more aimed at topology description, however these models are not intended
to publish topology information to other domains. The model of GMPLS is
designed for use on the control plane between networking devices, and is not
aimed at publishing to other domains, and is also not easily suitable for hu-
man consumption. We have to conclude that all these models are unsuitable to
publish topology descriptions for inter-domain pathfinding in hybrid networks.

The most common data model is XML, which is suitable for distribution and
human-readable. The other data models, for SNMP and OSPF, are specifically
designed for use in their respective protocols, and these are not directly suitable
for exchange outside of their protocols.

We have also examined another possible data model from the Semantic Web
research, RDF. Data model may not be the proper label for RDF since it is more
like a layer between the information model and data model. Data is described
using triplets forming a graph, and these triplets can be encoded in several
different data models, including XML.

In the previous section we have explained several advantages that RDF has
over plain XML. We believe these features are important when developing a
network schema:

• The use of URIs as generic identifiers is an advantage in multi-domain
environments, since it makes it easy to express a request like ‘a path from
A to B ’ with A and B clearly and uniquely defined.

• We want to describe the interrelation of different (administrative) network
domains. Each domain must be able to publish its own network informa-
tion and point to other network domains. The seeAlso property makes it
possible to easily link between different domain descriptions.

• We want to allow for easy extensibility of the network schema. That is,
allow the users to not only publish network information they care about,

CONCLUSION 29

but also allow them to mix this with other schemata, both current (e.g.
geographic information or organizational information in geo and vcard),
and future schemata, either direct extensions of NDL or non-directly re-
lated schemata.

Because RDF/XML is an XML syntax, one could argue that XML can always
be used to achieve all of the above strengths by defining an XML syntax that
mimics the RDF syntax. However, in that case it is better to use an existing
standard, than to develop a custom solution, both for compatibility reasons, as
well as being able to leverage existing tools.

30

31

Chapter3
The Network Description Language

This chapter is based on Using RDF to Describe Networks by
J.J. van der Ham, F. Dijkstra, F. Travostino, H.M.A. Andree and
C.T.A.M. de Laat [1] and Semantics for Hybrid Networks Using the
Network Description Language by J.J. van der Ham, P. Grosso and
C.T.A.M. de Laat [2].

3.1 Introduction
In the previous chapter we have examined existing models for describing com-
puter networks. We found that there currently is no suitable model for distri-
bution and pathfinding in a multi-domain scenario. While current information
models often use Extensible Markup Language (XML) as portable interchange
syntax, we have argued that Resource Description Framework (RDF) is more
appropriate to the task.

In this chapter we introduce our information model for topology and network
state the Network Description Language. It builds upon RDF and its linking
capabilities to produce a distributed view of the global inter-domain network.
NDL provides a way to implement the idea of the Topology Knowledge Base as
proposed by Travostino in 2005 [61]. To the best of our knowledge NDL is the
first ontology in RDF to describe computer networks.

32 CHAPTER 3. THE NETWORK DESCRIPTION LANGUAGE

It is worth noting that the proposed network description language is only a
method to describe topology information. It does not eliminate the need for a
control plane for signalling and provisioning.

In section 3.2 we take a closer look at the problem area of describing networks
and in section 3.3 we show the initial version of NDL. Then in section 3.4 we
improve the model with simple layering information. Finally in section 3.5
we examine the problem of layer descriptions in more detail, and we further
improve the model with a technology independent solution for describing multi-
layer topologies.

3.2 Terminology for Computer Networks
Terminology plays a very important part in in scientific discussions and research.
It must identify the important concepts and objects in the problem space. The
terminology to describe computer networks and their operations has been the
subject of long debates. In 1978 Shoch[62] attempted to define a terminology
in order to help discussions on routing in computer networks:

“The “name” of a resource indicates *what* we seek, an “address”
indicates *where* it is, and a “route” tells us *how to get there*.”

Unfortunately his paper was little noticed, and it took until 1982 to get
more recognition when Saltzer[63] observed that the discussion on computer
networking was still confusing because of lack of strict definitions. He took the
terminology of Shoch and provided more strict definitions of these terms, and
also introduced the term network attachment point, quoting from [63]:

Service and Users These are the functions that one uses, and
the clients that use them. Examples of services are one that
tells the time of day, one that performs accounting, or one that
forwards packets. An example of a client is a particular desktop
computer.

Nodes These are computers that can run services or user programs.
Some nodes are clients of the network, while others help imple-
ment the network by running forwarding services. (We will not
need to distinguish between these two kinds of nodes.)

Network attachment points These are the ports of a network,
the places where a node is attached. In many discussions about

TERMINOLOGY FOR COMPUTER NETWORKS 33

data communication networks, the term “address” is an identi-
fier of a network attachment point.

Paths These run between network attachment points, traversing
forwarding nodes and communication links.

Unfortunately, the confusion in discussions on computer networks continued
to exist as observed in 1999 by Chiappa[64]. He has examined the use of the term
‘address’, and identifies several different meanings and uses of the term. Chiappa
concludes that the overloading of the term ‘address’ has lead to confusion and
introduces a more strict definition:

“The name of a network connection entity to which the system of
routers will deliver a packet.”

He also introduces the abstract concept of an ‘endpoint’:

“An ‘endpoint’ is thus defined as one participant of an end-end com-
munication; i.e. the fundamental agent of end-end communication.
It is the entity which is performing a reliable communication on an
end-end basis.”

The main point Chiappa makes is that the address and name for an endpoint
should not be the same. When they are different, it becomes possible to have
mobile connections, mobile applications, and on the whole makes for a cleaner
solution:

“Put in more concrete terms, this argument for explicit recognition
of endpoints, and naming of them, says that doing so will result in
substantial improvements in overall utility, directness, simplicity, ro-
bustness, flexibility, etc; these are all properties which are treasured
highly in designs that have to have a long life-time.”

The terminology in the above three papers is mostly aimed at describ-
ing routing functionality in computer networks. However, the difficulties en-
countered there show that describing computer networks is not a trivial problem.
Even though computer networks are entirely the product of human engineering,
its working has become complex and has grown far beyond easy comprehension.

34 CHAPTER 3. THE NETWORK DESCRIPTION LANGUAGE

3.3 The Network Description Language
With the discussions and papers as described in the previous section in mind,
we have set out to create an ontology for describing topologies of computer
networks. Our contribution is to use the outcomes of the papers and discussions
not only to write down clear definitions, but to also make this terminology easily
available to applications that want to deal with the network.

Our initial goal has been to describe all the necessary elements for doing
pathfinding on a single layer in optical computer networks. The most important
elements are then devices, interfaces and how these are connected. A path from
one device to another goes through interfaces, connections between interfaces,
and in the end to another device.

A second use-case is to provide a good overview of resources. For example,
our experimentation network is distributed over two sites with a number of
connections between them. The network can be seen as a single network, yet to
create an accurate description of both our sites, we use location objects.

Our first schema for the Network Description Language is shown in fig-
ure 3.1. An ontology in RDF consists of classes and properties, as we discussed
in section 2.5.3. Below we describe the classes and properties of NDL in more
detail.

Location Device Interface

locatedAt hasInterface

descriptionname

connectedTo

switchedTo

Figure 3.1: The classes and properties of the Network Description Language
(version 1)

NDL version 1 has three classes, shown at the top of the figure, which define
the kind of resources.

Location This class describes a place where resources are located. Often re-
quests for lightpaths are from location to location to connect two comput-
ing clusters, or between other sets of resources that are specific to that

THE NETWORK DESCRIPTION LANGUAGE 35

location. A Location class is also helpful when drawing network maps, see
also section 4.2.

Device The physical nodes in the network, this can be any kind of device such
as a computing node, a switch, or a router.

Interface The interfaces with which devices are connected to a network.

The figure also shows six properties at the bottom, to define the relations
between instances of the NDL classes, other classes, or static values.

locatedAt A relation between resources and their location,

hasInterface A relation between devices and interfaces,

connectedTo A relation between two interfaces, describing that they are dir-
ectly externally connected,

description A relation that can be used to include a (human-readable) de-
scription of a resource,

name To define the name of a resource,

switchedTo A relation between two interfaces describing that they are intern-
ally connected, for example in optical cross-connects.

The choice for this limited set of classes and properties has been governed
by the desire to keep things simple, yet powerful enough to provide accurate
descriptions. The language aims to describe the network topology just above
the physical layer, so we ignore static physical elements such as filters, or amp-
lifiers. Yet the descriptions provide enough information for our two use-cases,
pathfinding and network visualization.

One explicit simplification of the topology has been to describe every element
of the network as a generic device. We have also considered differentiating
devices by the layer that they operate on, however the actual functionality of
networking devices can be very complex. For example, consider current ethernet
router/switches. They are capable of both switching and routing, which makes
it very hard to explicitly describe their functionality. In the end we concluded
that it is important to accurately describe the physical topology. Through the
extensibility of RDF, the capability descriptions can always be added later,
while retaining full backward compatibility.

36 CHAPTER 3. THE NETWORK DESCRIPTION LANGUAGE

A network topology described using these classes and properties contains
all elements for pathfinding through the network, if we assume a single tech-
nology layer. Even though in optical networks different technologies are used,
descriptions in this schema already provide enough information to create net-
work maps, such as the map of the GLIF network shown previously in figure 1.2.
These maps give a global overview of the network, and engineers can then get
a sense of which domains to contact for connection requests.

An example of a network description is shown in listing 3.1, which describes
the network shown in figure 3.2.

Rembrandt3 Glimmerglass Rembrandt5

eth0 port3 port5 eth0

Figure 3.2: A simple network.

The example in listing 3.1 starts with the standard header of an XML file
using an UTF-8 encoding. Lines 2 and 3 opens the RDF description, and
defines namespaces: rdf is the standard RDF namespace, and ndl is the NDL
namespace. The URIs for namespaces in RDF are just identifiers, but often
the URI is also used as a URL to publish the schema. In our case we also use
http://www.science.uva.nl/research/sne/ndl# to publish the NDL schema.

Line 4 opens the definition of the Lighthouse location. The #-prefix states
that the device is defined in the local namespace. Line 5 provides the human-
readable name for the location, and line 6 closes the location definition. Lines 7
to 11 define the device Rembrandt3. Line 8 provides a human readable name and
line 9 states that this device is located in the location Lighthouse. Finally, line
10 defines that Rembrandt3 has an interface, Rembrandt3:eth0. This interface
is defined on lines 12 to 15. The connection to another interface is defined using
the connectedTo property on line 14, in this case it is defined to be connected
to Glimmerglass:port3. The Glimmerglass device is defined similarly on lines
16–31, and the Rembrandt5 device on lines 32–40. The RDF description is then
closed on line 41.

The connection between the Rembrandt3 and the Glimmerglass is defined in
both directions. This is used to denote a duplex connection and further ensures
the consistency of the description.

http://www.science.uva.nl/research/sne/ndl#

THE NETWORK DESCRIPTION LANGUAGE 37

1 <?xml version="1.0" encoding="UTF-8"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:ndl="http://www.science.uva.nl/research/sne/ndl#">
4 <ndl:Location rdf:about="#Lighthouse">
5 <ndl:name>Lighthouse</ndl:name>
6 </ndl:Location>
7 <ndl:Device rdf:about="#Rembrandt3">
8 <ndl:name>Rembrandt3</ndl:name>
9 <ndl:locatedAt rdf:resource="#Lighthouse"/>

10 <ndl:hasInterface rdf:resource="#Rembrandt3:eth0"/>
11 </ndl:Device>
12 <ndl:Interface rdf:about="#Rembrandt3:eth0">
13 <ndl:name>eth0</ndl:name>
14 <ndl:connectedTo rdf:resource="#Glimmerglass:port3"/>
15 </ndl:Interface>
16 <ndl:Device rdf:about="#Glimmerglass">
17 <ndl:name>Glimmerglass</ndl:name>
18 <ndl:locatedAt rdf:resource="#Lighthouse"/>
19 <ndl:hasInterface rdf:resource="#Glimmerglass:port3"/>
20 <ndl:hasInterface rdf:resource="#Glimmerglass:port5"/>
21 </ndl:Device>
22 <ndl:Interface rdf:about="#Glimmerglass:port3">
23 <ndl:name>port3</ndl:name>
24 <ndl:connectedTo rdf:resource="#Rembrandt3:eth0"/>
25 <ndl:switchedTo rdf:resource="#Glimmerglass:port5"/>
26 </ndl:Interface>
27 <ndl:Interface rdf:about="#Glimmerglass:port5">
28 <ndl:name>port5</ndl:name>
29 <ndl:connectedTo rdf:resource="#Rembrandt5:eth0"/>
30 <ndl:switchedTo rdf:resource="#Glimmerglass:port3"/>
31 </ndl:Interface>
32 <ndl:Device rdf:about="#Rembrandt5">
33 <ndl:name>Rembrandt5</ndl:name>
34 <ndl:locatedAt rdf:resource="#Lighthouse"/>
35 <ndl:hasInterface rdf:resource="#Rembrandt5:eth0"/>
36 </ndl:Device>
37 <ndl:Interface rdf:about="#Rembrandt5:eth0">
38 <ndl:name>eth0</ndl:name>
39 <ndl:connectedTo rdf:resource="#Glimmerglass:port5"/>
40 </ndl:Interface>
41 </rdf:RDF>

Listing 3.1: The NDL description of the network in figure 3.2.

38 CHAPTER 3. THE NETWORK DESCRIPTION LANGUAGE

Besides a topology description, the file also describes the current configur-
ation of the Glimmerglass device. The switchedTo statement in line 25 states
that the Glimmerglass:port3 has an internal connection to Glimmerglass:
port5. Just like the connectedTo property, the switchedTo property must be
defined in both directions. The inverse switchedTo property from Glimmerglass:
port5 to Glimmerglass:port3 is given on line 30. With the connectedTo and
switchedTo statements as given above, we have defined a path from the device
Rembrandt3 to Rembrandt5.

3.4 Extending the Network Description Language

The first version of NDL is very basic and only allows to describe the physical
topology of the network. While this is useful in itself, we also want to describe
more properties of the network, so that we can do more accurate pathfinding in
more complex networks. For that reason we have extended the first version of
NDL with extra classes and properties [3].

Location Device Interface Link

locatedAt hasInterface

descriptionname

capacity

connectedTo

encodingType transportType

switchedTo

Figure 3.3: The classes and properties of the Network Description Language
(version 2)

The new schema is shown in figure 3.3. We introduce one new class: Link,
this class is used to describe connections through a network that operators do not
know the exact details of. This is useful to describe trans-oceanic connections;
the actual connection is often a leased line provided by a carrier who does
not provide a description. There are many trans-oceanic links, sometimes even
multiple between the same locations, so it is important to be able to distinguish
between them.

EXTENDING THE NETWORK DESCRIPTION LANGUAGE 39

On the other hand a Link object can also be used to provide a more detailed
description of an internal connection, because it allows operators to break up
the connection in more detailed parts. An example of this is shown later.

We also add two new properties to allow for the description of layer in-
formation to provide support for multi-layer pathfinding: encodingType and
transportType. These two properties can be associated with objects of the
Link or Interface class to describe layering information similar to GMPLS[65].

The choice for using the layer descriptions of GMPLS has been governed by
the fact that GMPLS provides a very detailed model for describing the encodings
and capabilities of devices in multi-layer networks. GMPLS is also the de facto
standard for intra-domain circuit provisioning.

Type GMPLS Value
Packet 1
Ethernet 2
ANSI/ETSI PDH 3
SONET/SDH 5
Digital Wrapper 7
Lambda (photonic) 8
Fiber 9
FiberChannel 11

Table 3.1: Description of values for the encodingType property

Table 3.1 shows the possible values for the encodingType property as defined
by the Internet Engineering Task Force (IETF). NDL uses the same values as
defined for GMPLS. The lambda encoding type refers to interfaces that use
whole wavelengths, such as wavelength selective switched. The fiber encoding
refers to interfaces that encode the whole fiber, such as in an optical cross
connect.

The values of the transportType property define the technology used to map
the data on to the encoding. For example, value 18 denotes ‘Byte synchronous
mapping of DS1/T1’, which can be used on encodingType 5 (SDH). The values
of the transportType property are given in table 3.2.

Furthermore we extend NDL with another property for defining the capacity
of a Link or Interface using the capacity property. There we also follow the
definition of GMPLS and use bytes per second as the unit of the capacity, where
the values are given using the IEEE floating point format[66].

We follow the definition of capacity as used in GMPLS[65]. That is, the

40 CHAPTER 3. THE NETWORK DESCRIPTION LANGUAGE

Value Type Technology
0 Unknown All
5 Asynchronous mapping of E4 SDH
6 Asynchronous mapping of DS3/T3 SDH
7 Asynchronous mapping of E3 SDH
8 Bit synchronous mapping of E3 SDH
9 Byte synchronous mapping of E3 SDH

10 Asynchronous mapping of DS2/T2 SDH
11 Bit synchronous mapping of DS2/T2 SDH
13 Asynchronous mapping of E1 SDH
14 Byte synchronous mapping of E1 SDH
15 Byte synchronous mapping of 31 * DS0 SDH
16 Asynchronous mapping of DS1/T1 SDH
17 Bit synchronous mapping of DS1/T1 SDH
18 Byte synchronous mapping of DS1/T1 SDH
19 VC-11 in VC-12 SDH
22 DS1 SF Asynchronous SONET
23 DS1 ESF Asynchronous SONET
24 DS3 M23 Asynchronous SONET
25 DS3 C-Bit Parity Asynchronous SONET
26 VT/LOVC SDH
27 STS SPE/HOVC SDH
28 POS - No Scrambling, 16 bit CRC SDH
29 POS - No Scrambling, 32 bit CRC SDH
30 POS - Scrambling, 16 bit CRC SDH
31 POS - Scrambling, 32 bit CRC SDH
32 ATM mapping SDH
33 Ethernet SDH, Lambda, Fiber
34 SONET/SDH Lambda, Fiber
35 Reserved (SONET deprecated) Lambda, Fiber
36 Digital Wrapper Lambda, Fiber
37 Lambda Fiber
38 ANSI/ETSI PDH SDH
40 Link Access Protocol SDH SDH
41 FDDI SDH, Lambda, Fiber
42 DQDB (ETSI ETS 300 216) SDH
43 FiberChannel-3 (Services) FiberChannel
44 HDLC SDH
45 Ethernet V2/DIX (only) SDH, Lambda, Fiber
46 Ethernet 802.3 (only) SDH, Lambda, Fiber

Table 3.2: The possible values of the transportType property (from [65])

THE MULTI-LAYER NETWORK DESCRIPTION LANGUAGE 41

capacity includes the header space and is in bytes per second. For example, the
capacity of a 10 Gigabit Ethernet Link is given as 0x4E9502F9 in IEEE floating
point. This translates to 1.25 · 109 bytes per second, which is equal to 1010 bits
per second.

3.5 The Multi-Layer Network Description Language
In the previous section we have shown a first attempt at describing multiple lay-
ers in NDL. The definitions given there are not yet complete, it is only possible
to describe the transport layer, and not the switching layer. The definitions
used in GMPLS to describe this are quite complex, and even require splitting
the description of a device in certain cases1. Another disadvantage of using
the GMPLS method is that it requires the definition of the technologies in the
schema. A new technology means that it cannot be described until there is an
updated schema.

While GMPLS is the de facto standard in practice, the ITU-T G.805[68]
provides a strong theoretical foundation for describing network technologies and
the relations between them. Below we provide a brief introduction to the the-
oretical foundation of G.805 and show how we have mapped this to NDL. We
also extend NDL further with more classes and properties to be able to describe
more details of networks. We have split up multi-layer NDL in several schemata,
in the following subsections we first explain the new topology schema, then the
layer schema, the capability schema and finally the domain schema.

3.5.1 NDL Topology Schema
The multi-layer topology schema is an updated version of the previous NDL
schema. We have added several new classes:

Virtual Device The resources of physical devices are often split up using vir-
tualization. One physical device can host several virtual devices.

Static Interface An interface which is fixed and not configurable.

Configurable Interface An interface whose label can be dynamically con-
figured. For example a tuneable laser.

1See for example section 4.2.1 in Request For Comments (RFC) 5212[67] which shows
how to describe a node that is capable of doing both packet-switching and time-division
multiplexing.

42 CHAPTER 3. THE NETWORK DESCRIPTION LANGUAGE

Location

Virtual
Device

Interface Link

locatedAt hasInterface

capacity

connectedTo

switchedTo

Static
Interface

Configurable
Interface

Path

Broadcast
Segment

Cross
Connect

Device

linkTo

path segments

Figure 3.4: Classes and predicates in the NDL topology schema.

THE MULTI-LAYER NETWORK DESCRIPTION LANGUAGE 43

Interface The Interface class is now used to describe a configured interface,
i.e. a particular configuration of a Configurable Interface.

Broadcast Segment A generic case of a Link. A Broadcast Segment is a direct
(not concatenated) connection between multiple Interfaces. A Link can
only connect two Interfaces, while a Broadcast Segment connects multiple
interfaces.

Cross Connect A collection of network elements that can be represented as a
subnetwork connection (ITU-T G.805 terminology). A Cross Connect is
an internal data transport within a Device, unlike Links which transport
data between two Devices.

Path A collection of network elements that can be represented as a tandem
connection (ITU-T G.805 terminology) or as a path in a graph (in graph
theory). A path is always a connection at a single layer.

We have also introduced three new properties and changed definitions of
several others. In the new schema we have introduced the Path concept to
describe Paths. Along with this we have also changed the way of describing
connections between Interfaces.

A direct connection between two Interfaces (on the same layer) is described
either by linkTo statements between two Interfaces, or to an intermediate Link
object. The linkTo property is taken to be a uni-directional connection. Sim-
ilarly, the internal links are described using the switchedTo property, either
directly or by using an intermediate Cross Connect object.

The connectedTo property is used to define an external connection between
two Interfaces when the details are not all known. Connections can be defined
directly or using an intermediate Path object.

The path segments property is used to describe a Path. The Path object is
a container object with a sequence of paths and links.

In this new schema we have removed the encodingType and transportType
properties. We have deprecated these in favour of the ITU-T G.805 approach
described with the Layer schema in the next section.

3.5.2 NDL Layer Schema
The ITU-T G.805 document provides an extensive definition of details of ad-
aptations between different technologies. Clients of the network only require
knowledge about a subset of these definitions, so below we provide a simplified

44 CHAPTER 3. THE NETWORK DESCRIPTION LANGUAGE

version. For a more extensive introduction to G.805 and its relation to NDL
see [4], [13].

At the core of the definition is an adaptation function, this function defines
how data is taken from a higher layer, the client layer, and adapted into a lower
layer, the server layer. An adaptation function is always bi-directional, so it also
defines how data is de-adapted from the server layer to the client layer. Finally,
the function defines the adaptation of a specific client layer to a specific server
layer, and it is possible to have multiple adaptation functions for the same layer
tuple.

Client layer

Server layer

Adaptation
channel 1

channel 2
channel 3

channel n

Figure 3.5: A simplified graphical representation of an adaptation function
(left) and a multiplexing function (right)

Figure 3.5 shows the graphical notation. On the left we show a simple
adaptation function. On the right is an example of multiplexing: multiple
client layers, channels, are adapted together into a single server layer. In order
to demultiplex to the original channels labels are required, for example VLAN
numbers or wavelengths in a WDM signal. The reverse is also possible, i.e. one
client layer into multiple server layers, this is called inverse multiplexing.

Layers are described in NDL using logical interfaces. This means that a
single physical interface is described by multiple Interface objects, each on
a different layer, depending on the properties of that interface. For example
a physical interface in an Ethernet switch will have a logical interface on the
physical layer, and on the Ethernet layer, with an adaptation between them. A
more extensive example is described below in listing 3.2.

In figure 3.6 we show the NDL layer schema based on the G.805 model. The
layer schema does not define actual adaptation functions, but instead provides

THE MULTI-LAYER NETWORK DESCRIPTION LANGUAGE 45

Label Value Label Set

egress property

ingress label

property

Layer Adaptation
Property

label egress label

Interface
Class

ingress property

server countclient count

server capacityclient capacity

Figure 3.6: Classes and predicates in the NDL layer schema.

46 CHAPTER 3. THE NETWORK DESCRIPTION LANGUAGE

a common vocabulary to describe technologies, layers and the relation between
layers.

Adaptation functions are defined using the class Adaptation Property. The
definition of that function is given using four properties: the client layer, the
server layer, the client count and the server count.

The client and server layer properties are not explicitly defined as such,
instead they are given as the rdfs:domain and rdfs:range of that specific
AdaptationProperty instance.

The client count represents the maximum number of client layer interfaces.
The server count represents the number of required server layer interfaces.
For one-to-one adaptations, the client count and server count are both one. For
multiplexing adaptations, the server count is set to one, and the client count
is greater than one, see the example in listing 3.2. For inverse multiplexing
adaptations there is a single client layer, transported over multiple server layer
connections, for example a 1 Gigabit Ethernet connection that is transported
using 21 STS channels. For such an adaptation the client count is 1, and the
server count is 21.

A Layer is a specific encoding, or a set of compatible encodings. Associated
with a layer is a Label Set, the set of labels allowed for that layer. For example
the label used for the Ethernet Layer is the VLAN, which must come from the
set of integers {0, 1, 2, . . . , 4095}.

The set of labels that are allowed on an interface are described using the
ingress label set and egress label set properties. The property label
set is shorthand for setting both ingress and egress to the same value. The
actual labels configured on an interface are described using the ingress label
and egress label properties, with a similar label shorthand.

Finally we also define ingress property and egress property for layer
specific properties of an Interface. These properties are important to describe,
as they may cause incompatibilities between Interfaces on the same layer. For
example the MTU size of an Ethernet Interface: normally this is 1500 bytes,
but in some cases it is configured to a higher setting.

An example multi-layer description is given in listing 3.2. Lines 1 to 6 start
the XML RDF description and define namespaces. Besides the rdf and ndl
namespaces, we also define the RDF Schema (rdfs) namespace to use some
extra RDF properties, and we include the layer and wdm schemata. Lines 7 to
12 show an excerpt of that wdm schema with the definition of the WDM adaptation
property. Line 7 defines that it is an AdaptationProperty and line 8 defines
that it is also a regular RDF property. Lines 9 and 10 define the domain
and range of the adaptation property, in this case FiberNetworkElement and

THE MULTI-LAYER NETWORK DESCRIPTION LANGUAGE 47

1 <?xml version="1.0" encoding="UTF-8"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:ndl="http://www.science.uva.nl/research/sne/ndl#"
4 xmlns:wdm="http://www.science.uva.nl/research/sne/ndl/wdm#"
5 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6 xmlns:layer="http://www.science.uva.nl/research/sne/ndl/layer#">
7 <layer:AdaptationProperty rdf:about="http://www.science.uva.nl/research/sne/ndl

/wdm#WDM">
8 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"

/>
9 <rdfs:domain rdf:resource="http://www.science.uva.nl/research/sne/ndl/wdm#

FiberNetworkElement"/>
10 <rdfs:range rdf:resource="http://www.science.uva.nl/research/sne/ndl/wdm#

LambdaNetworkElement"/>
11 <layer:serverCount rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">1

</layer:serverCount>
12 </layer:AdaptationProperty>
13 <rdf:Property rdf:about="http://www.science.uva.nl/research/sne/ndl/wdm#

wavelength">
14 <rdfs:subPropertyOf rdf:resource="http://www.science.uva.nl/research/sne/ndl

/layer#label"/>
15 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
16 </rdf:Property>
17 <ndl:Interface rdf:about="#port3-l1310">
18 <rdf:type rdf:resource="http://www.science.uva.nl/research/sne/ndl/wdm#

LambdaNetworkElement"/>
19 <wdm:wavelength rdf:datatype="http://www.w3.org/2001/XMLSchema#float">1310.0

</wdm:wavelength>
20 </ndl:Interface>
21 <ndl:Interface rdf:about="#port3">
22 <rdf:type rdf:resource="http://www.science.uva.nl/research/sne/ndl/wdm#

FiberNetworkElement"/>
23 <wdm:WDM rdf:resource="#port3-l1310"/>
24 </ndl:Interface>
25 </rdf:RDF>

Listing 3.2: The NDL description of a WDM adaptation.

48 CHAPTER 3. THE NETWORK DESCRIPTION LANGUAGE

LambdaNetworkElement respectively. For this adaptation property we define
that the serverCount is 1 (an XML Schema integer) on line 11. We do not define
the clientCount, because this is variable for WDM. WDM is a multiplexing
adaptation that is always transported over a single fiber (the server layer). The
client count is dependent on the specific implementation and configuration of
WDM on a device.

A label property is defined on lines 13 to 16. It is a regular RDF property,
as defined on line 13, but also a kind of NDL label, as defined on line 14. The
range of the label is an XML Schema float number. This label is used in an
interface, port3-l1310, that is defined in lines 17–20. Line 17 defines the NDL
Interface, and line 18 defines that it is on the Lambda layer. The wavelength of
the interface, 1310nm, is defined on line 19. Another interface, port3, is defined
on lines 21–24, line 21 states that it is an NDL Interface, and line 22 defines
that the interface is on the Fiber layer. Everything is tied together on line 23,
there we define that the port3-l1310 interface is adapted to the port3 using
the WDM adaptation.

3.5.3 NDL Capability Schema

In the previous section we have defined classes and properties to describe how
data is encoded in the network. In this section we define how to describe the
capabilities of networking devices, that is how they move data coming in from
one interface out to another interface.

Switch Matrix

has switch matrix

swapping capability

switching capability

has cast type

Figure 3.7: The SwitchMatrix class and its related properties

A Switch Matrix represents the switching capability of a device or domain
at a single layer. If a domain or switch can operate on multiple layers it may
have multiple switching matrices: one for each layer. A switch matrix can be
statically configured to forward data from one logical interface to another logical

THE MULTI-LAYER NETWORK DESCRIPTION LANGUAGE 49

interface. These configurations are represented by a switchedTo property in
NDL.

The capabilities of a switch matrix are defined using three properties:

Switching capability The switching capability describes the ability of a device
to forward data from one interface to another interface with the same
label. Two interfaces without a label are considered to have equal labels
– both the “empty” label.

Swapping capability Some switch matrices are also able to convert between
labels. For example some Ethernet switches can change the VLAN tag.
The swapping capability represents the ability of a device to forward data
from one interface to another interface with a different label.

Cast type The cast type defines how a switch matrix can switch different in-
terfaces. Most switch matrices can only do unicast, i.e. only cross connect
two unused interface.

Some switch matrices can do multicast : they can make a cross connect
from A to B, even if there already is another cross connect with source A.

Broadcast switch matrices are entirely different: if two interfaces have
the same label, then they must exchange data. An example of this is an
Ethernet switch matrix that switches on VLAN labels.

3.5.4 Domain Schema
The topology schema allows the description of physical network topologies. The
NDL domain schema allows to group these descriptions in networks.

The two classes in the domain schema are:

NetworkDomain is a collection of network elements. It behaves very similar
to a Device in the topology schema, but describes a domain rather than
a physical device.

AdministrativeDomain is an organizational entity that is responsible for the
operational control of resources (including network resources).

3.5.5 Technology Independence
Each network can independently describe their own network in NDL. Simil-
arly, we want our multi-layer network description to be technology independent

50 CHAPTER 3. THE NETWORK DESCRIPTION LANGUAGE
A Network Topology Description

The Topology Schem
a

A Technology Schem
a

The Layer Schem
a

F
igu

re
3.8:

A
netw

ork
description

relies
on

the
topology

and
specific

technology
schem

ata.
T
he

technology
schem

ata
rely

on
the

layer
schem

a.

THE MULTI-LAYER NETWORK DESCRIPTION LANGUAGE 51

by providing building blocks to describe technologies. In the multi-layer NDL
schemata we have provided classes and properties to describe the details of lay-
ers and adaptations. This is a clear de-coupling of topology and technology
information.

Figure 3.8 shows our implementation of the de-coupling between topology
and technologies. It shows a network topology description at the top-left,
which makes use of the topology schema (bottom-left), and a specific technology
schema, in this case WDM (top-right). This technology schema is defined using
the NDL Layer schema (bottom-right). These descriptions are all tied together
using standard RDF definitions.

We have created examples of technology schemata for Ethernet, WDM or
TDM and more[69]. The technology schemata are defined as subclasses or in-
stances of classes defined in the layer schema. A path finding algorithm should
only have knowledge of the topology schema and layer schema, and learn about
a specific network or about specific technologies by reading specific descriptions
based on these schemata. This approach allows for a pathfinding application
that learns about layers and technologies from the NDL descriptions. This
means that the application does not have to know a priori about all the tech-
nology details[70].

3.5.6 Comparing NDL and GMPLS

In our previous attempt at extending NDL to allow multi-layer descriptions in
section 3.4 we have used concepts from GMPLS with the encodingType and
transportType properties and values. However, we soon realised that this ap-
proach requires us to statically define the layers and technologies. With the
ITU-T G.805 approach described above, we can describe layers and adapta-
tions independently. The multi-layer topology descriptions can then link to
the relevant layer and adaptation details. This allows for a more dynamic and
future-proof approach.

However GMPLS is currently the de facto standard in the management of
optical networks. Our multi-layer NDL should be able to describe anything
that is possible to describe using GMPLS. In order to prove this we have
attempted to map the information that can be carried in OSPF(-TE) LSAs to
NDL. We have concluded that it is possible to translate all the relevant multi-
layer topology information from OSPF and OSPF-TE to NDL. The details of
these mappings can be found in appendices A and B respectively.

52 CHAPTER 3. THE NETWORK DESCRIPTION LANGUAGE

3.6 Conclusion
In this chapter we have introduced the way we apply RDF to describing net-
works: the Network Description Language. At first NDL only provided a way
to describe the physical topology. This allowed us to create linked multi-domain
topologies, which can be very useful for network diagrams, and as aid to engin-
eers in manual pathfinding.

In the next step we have extended NDL towards multi-layer network descrip-
tions. Building on the work of GMPLS, we extended NDL with properties to
describe encoding and transport types, as described in section 3.4. However, the
descriptions as inspired by GMPLS do not allow us to describe arbitrary tech-
nologies. When new technologies are introduced, the schema must be updated
to include new values for these technologies.

Believing that there must be a more optimal solution, we turned to the
ITU-T G.805 standard. ITU-T G.805 provides a way to generically describe
layers and adaptations. Building on these ideas, we defined the NDL Layer
schema as shown in figure 3.6. Taken together with the Capability schema, and
the Domain schema, we now have a good solution for describing multi-layer
multi-domain networks with at least the same expressivity as GMPLS.

A complete overview of the NDL schemata as a UML class diagram is shown
in figure 3.9.

In section 2.2 we set requirements for a network model, it should be concise,
interoperable, distributed, portable, and extensible. In this chapter we have
shown the definitions of the NDL schemata, which provide concise definitions
for how to use each class and property. By using RDF as the data model for
NDL, it is interoperable, following an open standard. It is also distributed,
with the powerful seeAlso property, it is possible to link together different,
separately maintained network descriptions. RDF also makes it easy to create
globally unique identifiers using the automatic prefixing with the # notation,
this makes network descriptions easily portable. RDF also allows to easily
extend descriptions with properties from other schemata. Finally, RDF can be
expressed in XML or other human-readable syntaxes. For these reasons NDL
satisfies all of our original requirements.

CONCLUSION 53

0.
.1

*

ha
sI

nt
er

fa
ce

In
st

an
tia

te
d

M
ux

In

te
rfa

ce

in
gr

es
sL

ab
el

Se
t:

 L

ab
el

Se
t

eg
re

ss
La

be
lS

et
:

 L

ab
el

Se
t

Po
te

nt
ia

l M
ux

In

te
rfa

ce

*

* co
nn

ec
te

dT
o

* *
co

nn
ec

te
dT

o

0.
.1

0.
.1

lin
kT

o

0.
.1

0.
.1

sw
itc

he
dT

o

0.
.1 *

ha
sS

wi
tc

hM
at

rix

0.
.1 *

ha
sI

nt
er

fa
ce

0.
.1

*

1 *

cli
en

tL
ay

er

1 *

se
rv

er
La

ye
r

0.
.1

*

ha
sI

nt
er

fa
ce

0.
.1

*
ha

sD
ev

ice0.
.1 *

in
Ad

m
in

Do
m

ai
n

0.
.1

*
ha

sS
er

vic
e

0.
.1

*

in
Ad

m
in

Do
m

ai
n

0.
.1

*
lo

ca
te

dA
t

1 *
ad

ap
ta

tio
n

cli
en

tIn
te

rfa
ce

se
rv

er
In

te
rfa

ce

To
po

lo
gy

La
ye

r
Ca

pa
bi

lity
Do

m
ai

n
Ph

ys
ica

l

UM
L

re
pr

es
en

ta
tio

n
of

 N
DL

 s
ch

em
as

0.
.1

*

ha
sS

wi
tc

hM
at

rix

20
08

-1
2-

20

0.
.1

*

*0.
.1

sw
itc

he
dT

o
*

*

lin
kT

o

*

0.
.2

lin
kT

o

St
at

ic
 In

te
rfa

ce

Br
oa

dc
as

t
Se

gm
en

t

Li
nk

Pa
th

Cr
os

s
Co

nn
ec

t

in
gr

es
sla

be
l:

La
be

l
eg

re
ss

la
be

l:
La

be
l

In
te

rfa
ce

in
gr

es
sL

ab
el

Se
t:

 L

ab
el

Se
t

eg
re

ss
La

be
lS

et
:

 L

ab
el

Se
t

Co
nfi

gu
ra

bl
e

In
te

rfa
ce

Ne
tw

or
k

El
em

en
t

Tr
an

sp
or

tN
et

w
or

k
El

em
en

t

ad
dr

es
s

ge
o8

4
co

or
ds

ro
om

fa
cil

ity
ra

ck
pa

ne
lLo

ca
tio

n
bl

ad
e

ch
as

sis
slo

tn
um

be
r

m
an

uf
ac

tu
re

r
se

ria
ln

um
be

r

Ph
ys

ic
al

 E
le

m
en

t

sw
itc

hi
ng

Ca
pa

bi
lity

sw
ap

pi
ng

Ca
pa

bi
lity

ha
sC

as
tT

yp
e:

 {U
ni

Ca
st

, M
ul

ti-

 C
as

t,
Br

oa
dC

as
t}

m
em

or
yB

uf
fe

r

Sw
itc

hM
at

rix

ad
dr

es
s

Ad
m

in
is

tra
tiv

e
Do

m
ai

n

De
vi

ce

Ne
tw

or
k

Do
m

ai
n

ca
pa

cit
y

Co
nn

ec
tio

n
Po

in
t

cli
en

tC
ou

nt
se

rv
er

Co
un

t

Ad
ap

ta
tio

n
Fu

nc
tio

n

La
ye

r

Ad
ap

ta
tio

n
Pr

op
er

ty

ac
ce

ss
m

et
ho

d
in

fo
rm

at
io

nv
ie

w
se

rv
ice

St
ag

e
re

al
m

sc
op

e
tim

eo
utSe

rv
ic

e

La
be

lS
et

*

*
se

gm
en

ts

*

*

ho
ps

F
ig
u
re

3.
9:

U
M
L
re
pr
es
en
ta
ti
on

of
th
e
co
m
pl
et
e
N
D
L
sc
he
m
a

54

55

Chapter4
NDL Applications

This chapter is based on Semantics for Hybrid Networks Using the
Network Description Language by J.J. van der Ham, P. Grosso and
C.T.A.M. de Laat[2], Using the Network Description Language in Optical
Networks by J.J. van der Ham, P. Grosso, R. van der Pol, A. Toonk and
C.T.A.M. de Laat[3] and A Distributed Topology Information System for
Optical Networks Based on the Semantic Web by J.J. van der Ham, F. Dijk-
stra, P. Grosso, R. van der Pol, A. Toonk and C.T.A.M. de Laat[5].

4.1 Introduction
In the previous chapter we have introduced the Network Description Language.
We have shown an example of how it can describe devices, and link between
different domains.

One of the advantages of using NDL as the language for description of hybrid
networks is the availability of semantic web tools for RDF that can parse and
consume the information in each NDL file. This means that extracting the
information needed for network management, and in our specific case lightpath
provisioning, is straightforward and simple.

In this chapter we show several examples of how we have applied the language
to solve many of the operational issues that operators and users face in hybrid

56 CHAPTER 4. NDL APPLICATIONS

optical networks, and other kinds of networks.
Network operators and users often use maps of the network to make sense of

the topology, and to support them in diagnostics or manual pathfinding. Having
up to date maps is very important, but creating and updating these maps is also
very difficult and labour intensive. In section 4.2 we show our graph generation
application.

Before we can start working on the operational issues, we need to gather
data, preferably in an automatic way. In section 4.3 we present how we gather
data from networks.

Besides extracting the visual aspect of the network description, we can also
perform other queries on the data. Section 4.4 shows how we perform queries on
the data, and our applications for lightpath planning both in a single network,
as well as over multiple networks.

After developing several of these applications we have found that it is helpful
to have a toolkit available to support the most common tasks performed with
NDL files. In section 4.5 we discuss the Python NDL Toolkit (pynt).

Another application that we have developed is a network emulation toolkit
called Virtual Network Experiments (VNE). We discuss this toolkit in sec-
tion 4.6.

Finally in section 4.7 we summarize our work, and discuss our findings and
results with the different applications.

4.2 Network Graph Generation
Our first application of the language has been the visualization of network to-
pologies. Given that most lightpaths are still provisioned manually, at least
when they involve crossing organization boundaries, maps become the visual
aid used by network engineers to setup the circuits. The information about
the connection between domains must be up to date, accurate and consistent,
because mistakes in lightpath provisioning can have impact on other lightpaths
and in the case of hybrid networks also on the regular traffic.

There are certainly many ways to create a graphical overview of a network,
and when working in a single network domain plenty of tools to choose from.
But in multi-domain environments, such as the cooperating universities and
research institutes in GLIF, we need to take into account that the information
for each domain is not centrally maintained and there is a big potential for
inconsistencies. The manual creation of these large-scale topology overviews
requires a tedious conversion of gathered data to a consistent representation,

AUTOMATIC GENERATION OF NETWORK DESCRIPTIONS 57

and the verification of consistent information at the boundaries. After these
steps one can then feed the information to the graphing tools. Requesting this
data from the different networks in GLIF and processing that is a process which
can easily take months.

NDL provides a way for operators to interoperably and independently pub-
lish their network topology, including references to other networks. Starting
from a network description in NDL format, we extract the connections between
the devices and their names. Using a small script, this data is then converted
to serve as input to GraphViz, an open source graph visualization tool[71]. An
example of such a graph is shown in figure 4.1. This is a map of NetherLight[72],
one of the network domains participating in GLIF.

Figure 4.1: A graph of NetherLight resources (generated from NDL file)

The graphs generated using GraphViz are not always ideal, they are gen-
erated automatically, which means that a small change in the topology can
radically change the generated image. For larger networks another option is to
embed GPS coordinate information in the NDL documents using the standard
geo RDF namespace. It then becomes possible to use Google Maps[73], for
example, to display networks on the map.

Figure 4.2 shows a subset of the GLIF resources on a global Google Map
plotted using NDL information. Each of the pointers in the figure is a separate
NDL file. The links between these points are defined by both sides, including
seeAlso pointers to the other file. The inter-domain topology is created by
crawling the distributed descriptions.

4.3 Automatic Generation of Network Descriptions
In the early stages we created network descriptions by hand. This soon became
very tedious, and error-prone. A first simple method of automating NDL gener-
ation is by using forms. We created a simple webform (see [74]), which allowed
us to quickly create a description for a number of locations and devices with
their interfaces, and connections between them.

58 CHAPTER 4. NDL APPLICATIONS

Figure 4.2: A subset of the GLIF resources on a Google Map generated from
NDL files as demonstrated at SC06

Network descriptions based on real world data are harder to create. Unfortu-
nately, as we have discussed in chapter 2 there is no standard way of representing
management data in network hardware. Different vendors use different tech-
niques for storing management information. Over the years we have created
several different modules to cope with different sorts of hardware. Examples
are hand-coded Python scripts for reading specific devices (Force10 E-Series,
Glimmerglass), Python and Perl modules for input through TL1, and a Python
module for input from OSPF and OSPF-TE traffic.

When reading information from separate devices, the information must be
correlated using external information. That is, the information about the cables
connecting devices must be provided in some way. Even in dynamic networks,
these cables are often very static, most changes to the network topology are
done by changing device configurations. For example in our test network, all
machines are connected to an optical patch-panel, and several ports of this
patch-panel are connected to a switch. This allows a very dynamic topology
where connections between devices can either be made directly only passing
through the patch-panel, or through the switch, possibly using VLANs.

In larger networks where OSPF is used to manage routing, it is possible
to automatically gather topology data. The routers in such a network use a
link-state algorithm. This means that each router monitors the links to its
neighbours, and distributes this information to other routers in the network.
The distribution is done in such a way that each router has full knowledge of the
whole topology in its link state database. We wrote a program which requests a
copy of this database, and translates the relevant information to NDL, resulting

AUTOMATIC GENERATION OF NETWORK DESCRIPTIONS 59

in an automatically generated description of the network. Unfortunately, OSPF
only exchanges information about connectivity at the IP layer, so the topology
description will be limited to that layer.

An extension to OSPF, called OSPF Traffic Engineering (OSPF-TE), is used
in the GMPLS protocol suite. OSPF-TE defines several new types of messages.
These can contain information about layers and different kinds of labelling, so
that different transport techniques can be combined. The new messages also
allow the topology information to be exchanged out-of-band, i.e. the messages
about the network can be exchanged on a separate network. This allows it to
be used in optical networks where in-band management is not possible.

4.3.1 Topology Generation for TITAAN

The TITAAN network is military network of the Royal Netherlands Army (see
section 1.4), using commercial off-the-shelf hardware. The network nodes have
been configured such that it allows for quick plug-and-play operations, requiring
minimal configuration in the field. All this has been done (just) within the
boundaries of normal networking standards and capabilities.

While the configurations have allowed for quick setup in the field, some of
the complexity moved to managing and monitoring the network at the network
operations centre. The engineers have had trouble getting a good overview
of the network, because all available network management tools can not make
sense of the configuration.

We have developed a proof-of-concept application for the TITAAN network
which extracts the topology data from the OSPF network. The topology is then
exported to NDL, so that it can be used in other applications, such as showing
which path will be used between two nodes.

The application has provided the engineers with a valuable source of inform-
ation with which they can easily see which route traffic will take through the
network. The topology data can also easily be used as input information for
other applications, so that for example they can gauge the current state of the
network and adapt their behaviour to it.

4.3.2 Topology Generation from OSPF-TE

We have also extended our work on topology extraction from OSPF to OSPF-
TE. Messages in OSPF-TE are exchanged out-of-band, the control-plane net-
work runs regular OSPF, which is then supplemented with Opaque LSAs. These

60 CHAPTER 4. NDL APPLICATIONS

are a special kind of LSAs that can carry different kinds of contents describing
the topology and details of devices and interfaces on the data plane.

Unfortunately, there are not many production networks using GMPLS, but
we have successfully tested this with some experimental setups using DRAGON.
DRAGON, Dynamic Resource Allocation over GMPLS Optical Networks, is an
open-source implementation of OSPF-TE and other GMPLS protocols[75]. We
have also successfully used the exporting from OSPF-TE in network emulations,
which we discuss in section 4.6.

Technical details about OSPF and OSPF-TE and how the information in
LSAs maps to NDL descriptions can be found in Appendices A and B.

4.4 Extracting Data from Network Descriptions

As we described in the previous chapter NDL is based on RDF. This has
several advantages, one of which is that we can make use of generic RDF tools
and standards. An important tool for RDF is the SPARQL Protocol and Query
Language for RDF (SPARQL)[53], which is an SQL-like query language for
RDF. It uses a simple syntax to specify variables and triplet templates for
retrieving information from a repository. An example is shown in Listing 4.1.

1 PREFIX ndl: <http://www.science.uva.nl/research/sne/ndl#>
2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
3 SELECT ?hostname ?locationname
4 WHERE { ?host rdf:type ndl:Device .
5 ?host ndl:locatedAt ?location .
6 ?host rdf:label ?hostname .
7 ?location rdf:label ?locationname .
8 }

Listing 4.1: Example of a SPARQL query.

The example shows a query to select hostnames and their location names,
the variables ?hostname and ?locationname. The values must satisfy the con-
straints in the WHERE clause. These constraints are expressed using two other
variables, ?host and ?location. The ?host must be of type Device, and must
be locatedAt a ?location. Then with the label property the names of both
objects are found. In summary this query will return all host and location pairs,
if the host has a location defined.

EXTRACTING DATA FROM NETWORK DESCRIPTIONS 61

4.4.1 Lightpath Planning in SURFnet6

SPARQL allows for much more complex queries, and we have used it in a light-
path planning application for SURFnet6. SURFnet6 is the Dutch national re-
search and education network. SURFnet6 is a hybrid network, offering both IP
services and lightpath services. Toonk and Van der Pol of the Dutch national
super-computing centre SARA have written a tool for planning new lightpaths
based on NDL and SPARQL [76, 77] .

Part of the SURFnet6 hybrid network is formed by a collection of Nortel
OME6500 Time-Division Multiplexing (TDM) nodes. We obtain the topology
information by using the neighbour knowledge from each of these devices. We
gather the data by periodically sending and receiving discovery messages on the
control plane. We use NDL to describe the topology of the TDM layer in files.

1 my $query = new RDF::Query (<<"END", undef, undef, ’sparql’);
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX ndl: <http://www.science.uva.nl/research/air/ndl#>
4 SELECT ?device1 ?device2 ?if1 ?if2
5 WHERE {
6 ?d1 ndl:hasInterface ?x .
7 ?d1 ndl:name ?device1 .
8 ?x ndl:connectedTo ?y .
9 ?x ndl:name ?if1 .

10 ?d2 ndl:hasInterface ?y .
11 ?d2 ndl:name ?device2 .
12 ?y ndl:name ?if2
13 }
14 END
15

16 $ne1 = $result->[0]->getValue;
17 $ne2 = $result->[1]->getValue;
18 $if1 = $result->[2]->getValue;
19 $if2 = $result->[3]->getValue;
20

21 $g->add_edge("$ne1-$if1", "$ne2-$if2");
22

23 my @V = $g->ShortestPath("$v1", "$v2");

Listing 4.2: A SPARQL Query implemented in Perl

Listing 4.2 shows the SPARQL query that is used in the planning application.
Line 6 gets all interfaces of a device and line 7 gets the name of the device. Line
8 gets the neighbour of an interface and finally line 10-11 get the name of the
device to which the neighbour interface belongs.

Line 16-19 store the device and interface names of both ends of a link (con-

62 CHAPTER 4. NDL APPLICATIONS

nectedTo). These variables are used to build a graph. Line 21 builds the edges
of the graph. This implicitly adds the vertices $v1 and $v2 to the graph. Finally,
in line 23 a shortest path is computed by the method ShortestPath, which is a
standard Dijkstra Shortest Path implementation.

Additionally, a network state database holds the cross-connect information
for each network element in the network, that is, information about currently
provisioned lightpaths. This enables the application to determine the amount
of time-slots still available on each interface. Combining the NDL topology
information and the database time-slot information we can find a shortest path
through the network that has enough free time-slots to accommodate a new user
request. To find this path we use a constraint based shortest path algorithm.

The result of the path calculations are then implemented by human oper-
ators who provision the lightpaths through SURFnet6. This application is a
first step towards completely automatic lightpath provisioning. Before creating
this application, the engineers had to piece together the time-slot information
themselves, making the provisioning process a very time-consuming procedure.

4.4.2 Lightpath Planning in GLIF
We have also extended the lightpath planning application to GLIF, which con-
stitutes an ideal environment to see NDL at work in a multi-domain and multi-
administrator setup. The most important domains of the GLIF network are the
lightpath exchanges, also called GLIF Open Lightpath Exchanges (GOLEs).

As a proof of concept, we created an abstraction of several GOLEs of the
GLIF network, where each GOLE is described as a virtual device with several
interfaces. These interfaces connect the GOLE to other GOLEs. To correlate
the abstracted descriptions of each individual GOLE with each other we use
the seeAlso property of RDF. Using these links, a linked web of descriptions
is formed. This provides a global view of the network, where each domain
maintains the description for its own GOLE. This network is also shown in
figure 4.2.

1 <ndl:Device rdf:about="#netherlight">
2 <rdf:label>Netherlight</rdf:label>
3 <ndl:locatedAt rdf:resource="#NetherLight"/>
4 <ndl:hasInterface rdf:resource="#netherlight:if1"/>
5 <ndl:hasInterface rdf:resource="#netherlight:if5"/>
6 <ndl:hasInterface rdf:resource="#netherlight:if6"/>
7 <ndl:hasInterface rdf:resource="#netherlight:if10"/>
8 </ndl:Device>
9

EXTRACTING DATA FROM NETWORK DESCRIPTIONS 63

10 <ndl:Interface rdf:about="#netherlight:if1">
11 <rdf:label>if1</rdf:label>
12 <ndl:connectedTo rdf:resource="http://networks.internet2.edu/manlan/manlan.rdf#

manlan:if1"/>
13 <ndl:capacity rdf:datatype="http://www.w3.org/2001/XMLSchema#float">1.2E+9</

ndl:capacity>
14 </ndl:Interface>
15

16 <ndl:Interface rdf:about="http://networks.internet2.edu/manlan/manlan.rdf#
manlan:if1">

17 <rdfs:seeAlso rdf:resource="http://networks.internet2.edu/manlan/manlan.rdf"/>
18 </ndl:Interface>

Listing 4.3: Part of the abstracted Netherlight GOLE description

Listing 4.3 shows an excerpt of the abstract description for the Netherlight
GOLE. Line 1 describes which virtual device (GOLE) this is. Line 4 to 7
describe which interfaces the (virtual) device has. Interface netherlight:if1 is
described on line 10 to 16. line 11 describes its name and line 12 describes where
it is connected to. Finally, line 14 describes the capacity (total bandwidth) of
the interface. Lines 18 to 20 provide a pointer for the description of the other
side of the connection using the seeAlso property.

To find a path within the GLIF the first step is to read this NDL file. The
description for the other GOLEs is found by crawling the links contained in the
seeAlso properties. This way we can determine if a path exists and can be
provisioned in the GLIF network.

During SuperComputing 2006 we have shown an application that gathered
all the NDL files from the different GOLEs. Using a web interface, a user can
select two endpoints from a list, which is generated from the gathered NDL
information. After the two endpoints are selected, the application applies the
Dijkstra algorithm to find the shortest path between the two endpoints. The net-
work is displayed using Google Maps, as described in section 4.2. The shortest
path through the network is then also drawn in the same figure, using high-
lighted links. A list of hops is also provided next to the map. Figure 4.3 shows
the example output for a path between Seattle and Geneva.

4.4.3 Lightpath Monitoring in NetherLight

NDL can play an important role in lightpath monitoring as well. SARA de-
veloped Spotlight, a tool for lightpath monitoring in SURFnet6 and in Neth-
erLight. To monitor the lightpaths, SARA uses NDL to specify their topology

64 CHAPTER 4. NDL APPLICATIONS

Figure 4.3: Pathfinding in GLIF, presented in Google Maps.

details, and actively query the network elements involved. The output is stored
in a network state database with alarm and configuration information.

The Spotlight application gathers all the information on the lightpaths in
one place, providing engineers with a single overview of all lightpaths, along
with their status. The user can then click on a specific lightpath to see an
overview of the configuration, and the status of each of the segments of the
lightpath. If a failure is detected somewhere in the lightpath route, this will be
clearly indicated using a visualization of the lightpath.

The Spotlight tool has made monitoring of lightpaths in SURFnet6 and
Netherlight a lot simpler. Engineers now have a single place where configuration
and alarm data is correlated into a single view, allowing them to more quickly
and accurately pinpoint the problem with a lightpath. The Spotlight application
is available online, see [78].

PYTHON NDL TOOLKIT 65

4.5 Python NDL Toolkit
The applications that we have discussed have been mostly developed in isolation.
We soon realised that much can be gained by providing a common toolkit for
parsing and creating NDL files.

The pynt[79] provides a complete object model of NDL in Python. The
toolkit allows a developer to grab an NDL file, request the toolkit to parse it
and directly have all the objects available that were described. The properties of
these instances can then be easily queried and updated. The updated description
can then be easily exported to an NDL file.

The toolkit consists of six main components:

pynt is the basis of the package that has the definitions of the object model,
and namespaces.

pynt.input contains modules that can parse from the RDF XML syntax, dir-
ectly from nodes, or from OSPF (see section 4.3).

pynt.output provides an output mechanism to the RDF XML syntax, but also
to graphs, and VNE configurations (see section 4.6).

pynt.protocols is a set of generic modules that provide base ‘protocols’ for
interacting with command-lines, OSPF, or through TL1.

pynt.technologies contains a set of pre-defined technology descriptions to
make it easier to describe nodes and interfaces of these technologies. Ob-
jects from these modules predefine layer properties, and make it easy to
use well-known adaptations between layers.

pynt.algorithms implements different pathfinding algorithms, such as Dijk-
stra’s shortest path algorithm, which can be used in single layer topologies,
and a breadth-first pathfinding algorithm that is suitable for multi-layer
pathfinding[13].

4.6 Virtual Network Experiments
Virtual Network Experiments (VNE)[6],[80] is a Python application that we
have developed to allow users to easily create a virtual experimental network.
The nodes in the network are implemented using User-Mode Linux (UML)[81],
which allows for a lightweight virtualization, yet allows users to run their own
applications.

66 CHAPTER 4. NDL APPLICATIONS

VNE takes a topology description in XML. This XML file can be written
manually or exported from an NDL file using pynt. VNE launches instances of
UML following the provided configuration. These instances are provided with
the proper configuration to create the network topology as described in the
configuration file. The emulated network is provided using the vde-switch tool
of the Virtual Distributed Ethernet project[82].

The contribution of VNE is that it makes it greatly simplifies the config-
uration and management of an emulated network. Configuring and launching
UML instances, along with the right network topology is a very complicated
task. VNE uses a clear XML syntax to define the configuration and network,
allowing users to easily create and modify complex topologies, ready for exper-
imentation.

We have also extended VNE to integrate it with DRAGON. The configur-
ation file and VNE provide the proper configuration for the DRAGON toolkit,
so that it is simple to create an emulated network that can be used to easily
experiment with GMPLS. VNE was invaluable for us to gain understanding of
GMPLS, and to test and validate the OSPF-TE export.

We can combine the OSPF-TE export to NDL, and the export from NDL
to VNE. This allows us to sample the topology from any GMPLS network,
and then create an emulated version of it using VNE. Both exports have been
validated by completing a full circle, i.e. creating a VNE configuration, running
that emulation, exporting the OSPF-TE data from that to NDL, and then create
a VNE configuration from that again.

4.7 Conclusion
In this chapter we have shown the applications that we have developed that use
NDL topology descriptions.

A first contribution of NDL has been that it allowed us to quickly create up
to date maps of networks. The maps can be made abstractly using GraphViz,
or if Global Positioning System (GPS) information is available, using Google
Maps.

We have shown that descriptions in NDL can easily be generated using web-
forms, or by using our toolkit. The toolkit can also extract topology informa-
tion in more automatic ways, either by logging into machines and parsing the
command-line output, or by extracting it from management traffic. This makes
it possible to provide a real-time view of the network.

The information retrieved from the network can support engineers with light-

CONCLUSION 67

path planning. With SARA we have developed an application that correlates
the NDL topology information with the database of timeslot usage, this allows
an engineer to quickly find an available path through the SURFnet6 network.

The configuration information of these lightpaths is also used to provide the
engineers with a status overview. The configuration and state of lightpaths is
presented in a graphical overview, allowing support engineers to quickly identify
the root cause of incidents in the network, and make a better assessment of the
consequential loss of services caused by this incident.

Developing the applications above has also inspired us to create the Py-
thon NDL Toolkit. The toolkit has made it very easy for us to test new ideas
and create new applications. Combined with the Virtual Network Experiments
application we can quickly create network topologies and test applications on
them.

The applications described in this chapter have provided us with valuable
insights about the possible use of NDL descriptions. They have allowed us to
test NDL in real-world scenarios and solve problems. Creating the applications
has helped us to gain a better understanding of the use-cases for the descriptions,
and provided valuable feedback for the NDL schemata.

The applications in this chapter have been mostly aimed at single layer
descriptions, multi-layer descriptions are a fairly recent development. Not many
networks have described their multi-layer network in detail yet, and we are
currently still exploring the possibilities.

68

69

Part II

Topology Aggregation in
Multi-Domain Networks

70

71

Chapter5
Introduction to Network Topology
Aggregation

5.1 Introduction
In the previous chapters we have introduced the Network Description Language
and shown its applications. However, applying NDL to real-life inter-domain
networks is not straightforward. Network operators do not always wish to share
their full topology, either for security, business, or for scalability reasons. On
the other hand it is necessary to share some degree of topology data to enable
inter-domain lightpath planning. It is possible to create a less detailed view of
a network topology using aggregation. This means that details of the internal
topology are aggregated into a virtual topology, which can then be published to
other domains.

Topology aggregation is not a new research topic. It has been applied in
ATM (Asynchronous Transfer Mode) networks, where it is also necessary to
exchange topologies. Asynchronous Transfer Mode (ATM) is a network framing
protocol developed in the mid 1980s. It encapsulates traffic into small fixed-
length cells, over which virtual circuits can be defined, creating a circuit switched
network. The topologies for ATM networks have been represented as graphs,
with attributes for QoS such as capacity, available bandwidth, link delay, et
cetera.

The rest of this chapter is organised as follows, in section 5.1.1 we discuss

72 CHAPTER 5. INTRODUCTION TO NETWORK TOPOLOGY AGGREGATION

how pathfinding is performed in aggregated topologies. Then in section 5.2
we describe different aggregation strategies. In section 5.3 we summarize three
performance studies of common aggregation methods, the first two study ATM,
while the latter focuses on purely optical networks. We finish the chapter with
a summary and comparison of the different studies in section 5.4.

5.1.1 Hierarchical Routing

One of the first standards on the area of topology aggregation is in the Private
Network-to-Network Interface (PNNI) Specification[83] of the ATM forum. As
the name of the standard implies, it specifies the interface between neighbouring
networks. This standard provides some pointers on how aggregation can be
performed, and it also defines how nodes can find routes through the aggregated
network.

Routing through aggregated topologies is performed using hierarchical rout-
ing. Each node in the network has perfect knowledge of its local domain, and an
aggregated view of the global topology. Using this knowledge, the node selects
a path with aggregated hops. These hops get expanded at the border nodes into
an underlying physical path. Together these expanded paths form a complete
path between the node and its chosen end-point.

An example is shown in figure 5.1, we see a path request from node A1 to
node C2 at the top, as seen from node A1. Notice that node A1 has complete
visibility of its own domain, but only aggregated visibility of the other domains.
Node A1 only knows that node C2 is in domain C, it does not know how it is
connected to the rest of Cs network.

As soon as the request reaches domain B, the first node in B, B1 maps the
path through the aggregated topology to the physical topology in B. B1 then
forwards the request to B3, which forwards the request to domain C. In domain
C the node C3 maps the path to the physical topology, and the path to C2
is completed. At the bottom of figure 5.1 we show the path mapped to the
physical topology.

Note that in the aggregated view nothing is said about the availability inside
the domains. If the links in domain B had no available capacity, then the path
request would have failed.

INTRODUCTION 73

Aggregated
B

Aggregated
C

A1

A2
A3

B1
B2

B3

C1 C2

C3 C4

A1

A2

A3

C2

Figure 5.1: An example of hierarchical routing through the aggregated topology
(top) and the physical topology (bottom)

74 CHAPTER 5. INTRODUCTION TO NETWORK TOPOLOGY AGGREGATION

Nucleus

Spoke

Figure 5.2: Examples of Symmetric Star (left) and Full Mesh (right) aggregated
topologies

5.2 Topology Aggregation

There are different ways of creating aggregated topologies. In the example in
figure 5.1 the domains are aggregated into single nodes and single links. Lee[84]
provides an overview of this and two other aggregation methods. Below we
describe the three most common aggregation strategies.

The Simple Node approach is the aggregation method that we have shown in
figure 5.1. This is also called Symmetric or Single Node approach. The topology
of a complete domain is replaced by a single node, which is directly connected
to other domains. A single metric is advertised for the connectivity through
this node. This single parameter implies that all connectivity through the node
is considered to be symmetrical.

In the Symmetric Star approach the topology of a domain is aggregated using
a central node. The border nodes of the original topology and their inter-domain
connections are preserved. The intra-domain connections are represented by
virtual links, spokes, to a virtual central node, the nucleus. All connectivity
in this topology runs through the nucleus. This is often referred to as Star
aggregation. An example is shown in figure 5.2 on the left, where we see an
aggregated topology of a domain that is connected to four other domains. This
is called a symmetric approach because a default definition for the properties
of the spokes is used. All the spokes then have the same properties, unless
explicitly specified otherwise.

On the right side of figure 5.2 is an example of the Full Mesh aggregation.

PERFORMANCE EVALUATION OF TOPOLOGY AGGREGATION 75

This aggregation preserves the most information of the original topology. Like
in the Star aggregation, the border nodes are kept in the aggregated topology.
Instead of a central node in the aggregated topology, there is a full mesh of
connections between the border nodes. These aggregated connections between
the border nodes can accurately describe the properties of the path through
the domain, thus preserving the most important information for connections
crossing the domain.

5.3 Performance Evaluation of Topology Aggregation
An aggregated topology hides details about the intra-domain connectivity. This
means that inter-domain pathfinding with aggregated topologies is not always
optimal. There are two types of performance impacts that can occur due to this
lack of information.

First, in the aggregated topology there is no discernible difference between a
domain that has many internal hops and a domain that has only one hop. This
means that the paths found in the aggregated topology may not always be the
shortest paths in the physical topology.

Second, a path found in the aggregated topology may not always have re-
sources available to map it to the physical topology. This means that the path
found in the aggregated topology is a false positive.

The impact on performance of the above effects can be measured in different
ways. The rest of this section describes three different studies. Section 5.3.1
describes the study performed by Guo and Matta on a single emulated ATM
network[85]. Section 5.3.2 presents the findings of Awerbuch et al. on several
emulated topologies with ATM networking[86]. The study on aggregated topo-
logies in an optical network by Liu et al.[87] is described in section 5.3.3. Finally
in section 5.4 we compare the results of the three studies.

5.3.1 Performance Evaluation Study by Guo and Matta
Guo and Matta[85] have examined the performance of aggregation methods
using the PNNI specification in ATM networks. They have examined the Simple
Node, Star, and Full Mesh aggregation methods and analysed the performance
on a single topology, randomly divided into domains. In their simulations they
use two different traffic workloads:

Uniform : source and destination pairs are uniformly distributed over the
network,

76 CHAPTER 5. INTRODUCTION TO NETWORK TOPOLOGY AGGREGATION

Skewed : some nodes are selected as destination for the majority of the con-
nections.

In either case, traffic between two end-points is defined using different ‘ser-
vices’. A service is defined using time-dependent arrival rate, average life-time
of the connection, maximum delay, and transmission rates (both average, and
peak, including the length of the busy period). An example of a service is a
video service, with a life-time of 20 minutes, an average rate of 0.7Mbps, a
peak rate of 2.1Mbps, with a busy period of 0.3 seconds, and a statistical delay
requirement P (end-to-end packet delay > 50msec)< 10−4.

They also examine the performance of different route selection methodolo-
gies in the Full Mesh aggregation, based on different sets of metrics: utilization,
utilization and hop-count, utilization and feasibility, or all three. Since pathfind-
ing based on multiple metrics is NP-complete[88], they apply a heuristic. The
authors first find a set of shortest paths, and then pick one of the set using the
metric selection. This set is formed by the shortest paths in the aggregated
graph, with length minhop, and paths of length minhop + 1. The decision of
picking the right path is performed by the source node for the whole path as
well as each of the border nodes for their segment of the path.

Their results show that under the skewed load, the Simple Node performs
better or as well as Full Mesh and Star aggregations. Under uniform workload,
both Full Mesh and Star outperform Simple Node significantly. In their sim-
ulations, the Star approach performs slightly worse than the Full Mesh as the
former provides a less detailed view of the available bandwidth.

5.3.2 Performance Evaluation Study by Awerbuch et al.
Another performance evaluation of routing with aggregated topologies is given
by Awerbuch et al. in [86]. The authors compare the following aggregation
schemes:

Full Mesh The full cost matrix between the border nodes is advertised,

Diameter Star aggregation with a metric of half the diameter of the original
network for each spoke,

Average Star aggregation with a metric of half the average cost between all
pairs of border nodes,

MST Minimum Spanning Tree of the border nodes,

PERFORMANCE EVALUATION OF TOPOLOGY AGGREGATION 77

RST Random Spanning Tree of the border nodes,

Spanner A t-spanner, which is a sub-graph that guarantees a worst-pair dis-
tortion of at most a factor t. The authors have used t = 2 for their
experiments.

These aggregation schemes are examined in combination with two methods
for metric values, a constant and an exponential cost function. In the constant
case, the link metric is fixed, regardless of the available bandwidth on the link,
this is equivalent to (weighted) min-hop routing. The exponential cost function
on the other hand uses a metric that increases exponentially as the available
bandwidth decreases.

In their simulations they examine both specifically designed topologies, as
well as randomly generated networks. The former topologies have been designed
to maximize the penalty for routing errors, so that difference in routing schemes
is emphasized. They have used ring-like topologies, as well as a self-similar
hierarchical topology, which is a three-level hierarchical topology, where each
level is a similar multi-stage graph.

The random networks were generated using an adaptedWaxman method[89].
In this method nodes are randomly placed on a grid, and the probability of a link
between two nodes decays exponentially with their Euclidean distance. They
adapted the method to prevent nodes exceeding a degree of four, but the degree
must always be at least two.

In the simulation the requests are modelled by a Poisson process, and the
holding time is exponentially distributed. The inter-arrival time of the requests
are exponentially distributed with a mean of 1 when the traffic load is 100%.
The load on the network is defined as (avg. request rate × avg. hold time)/
capacity of the avg. min. cut (over all source-destination pairs). The results
are analysed using two parameters:

Throughput defined as the fraction of attempted connections that are realized,

Control Load the average number of crank-backs required per realized con-
nection.

A crank-back is performed when a path that has been found in the aggregated
topology is not available in the physical topology. The information regarding
this false-positive is then used to locally update the view of the network, and is
then used in subsequent attempts to find a correct path. The amount of crank-
backs also gives an indication for the set-up delay, because route recalculation
when crank-backs occur is a time consuming task.

78 CHAPTER 5. INTRODUCTION TO NETWORK TOPOLOGY AGGREGATION

The results of the simulations confirm the authors’ earlier theoretical work[90]
that an exponential metric performs much better than a constant metric. In
fact, even the worst aggregation strategy in the exponential metric simulation
performs better than the best aggregation method in the constant metric sim-
ulation.

In their simulations the authors also varied the link-delay, so that topology
updates between domains, and reservation requests take longer to travel through
the network. The effect of the higher delay is that the performance difference
between all the aggregation methods becomes more pronounced.

On ring-like topologies the Random Spanning Tree and the two Star aggreg-
ation methods perform worse than the other methods. The Random Spanning
Tree method shows significantly the worst performance, with crank-back rates
of up to four times higher than the other aggregation methods. The perform-
ance difference of the two Star aggregation methods is less pronounced, but still
significant. The difference becomes more pronounced in a self-similar hierarch-
ical topology, were the Star methods perform significantly worse than the other
methods, including the RST.

Also in the random topologies the two Star aggregation methods and the
RST perform the worst. The Star aggregation methods require more crank-
backs, with a slightly worse throughput, and the RST method requires signific-
antly more crank-backs while providing a lower throughput.

In the above simulations each aggregated domain topology is updated once
the bandwidth availability of any of its constituent links changes. The authors
propose a more practical re-aggregation policy called the logarithmic update
re-aggregation policy. In this case the bandwidth b of a link is divided into
(log b)+1 blocks. Re-aggregation of the domain topology is only triggered when
the residual bandwidth crosses these division boundaries. With this update
scheme in the simulations, there is no significant difference in throughput, and
only a slight increase in the number of crank-backs for all aggregation schemes.
The only exception is MST, where there is a 5-20% increase in the number
of crank-backs with the new re-aggregation policy. This re-aggregation policy
requires significantly less amount of updates, and even under high-load settings
it requires over 30% less updates than the regular policy.

5.3.3 Aggregated Topologies in Optical Networks
While aggregated topologies have been studied extensively for ATM networks,
they have not been studied extensively for pure optical networks. Liu et al.[87]
have applied the Simple Node and Full Mesh aggregations to inter-domain WDM

PERFORMANCE EVALUATION OF TOPOLOGY AGGREGATION 79

networks. In both cases a wavelength availability vector is used to represent the
available wavelengths.

The aggregation strategies are tested using two different lightpath provi-
sioning strategies. They use the term transparent for lightpaths that have the
same end-to-end wavelength, and translucent for lightpaths that use different
wavelengths using optical-electrical-optical (OEO) conversions.

In the transparent case paths are selected using a K-shortest path algorithm
and a widest-shortest approach[91]. A wavelength for this path is then selected
using either the most-used or least-used wavelength. The most-used or least-
used wavelength selection method mean that the available wavelength on that
path are ordered by their use in the rest of the network[92].

In the translucent case paths are also first selected using K-shortest path,
but then the candidate path is selected using either minimum hop count, or
minimum converter count (based on the aggregated view only). The same
wavelength selection strategies are used, but this time only for segments between
converters. This makes the translucent routing inherently more complex.

The authors show results of their simulation in OPNET[93], a network sim-
ulator tool, on a topology with 9 domains and 19 inter-domain links, using 8 or
16 wavelengths. The results show that selecting the most-used wavelength out-
performs selecting the least-used wavelength. For transparent lightpaths Full
Mesh performs better than Single Node aggregation, with a difference of up
to 45% at 120 Erlang1 with 16 wavelengths. The authors note that the differ-
ence in blocking reduction becomes smaller when the intra-domain connectivity
decreases.

In the translucent case, it makes little difference in terms of blocking prob-
ability whether paths are selected based on the least number of hops or least
number of converters. There is still a difference between the two aggregation
schemes, but the difference is smaller than in the transparent case.

The same authors show more results on the same topology in [94]. They
show that using conversion capabilities on all nodes provides little improvement
over just converting at the border nodes. However, note that in the test topology
they are using, there are relatively few non-border nodes.

1Erlang is a unit to describe statistical measure of the traffic volume. Traffic of one Erlang
refers to a single resource being in continuous use, or two channels being at fifty percent use
each, and so on.

80 CHAPTER 5. INTRODUCTION TO NETWORK TOPOLOGY AGGREGATION

5.4 Summary
In this chapter we have discussed different methods for topology aggregation,
and described three studies evaluating the performance of pathfinding in aggreg-
ated topologies. Unfortunately, all three studies have used a different measure
of performance.

The results that Guo and Matta show in their paper use revenue as an
indication of the pathfinding performance. They define revenue as the total
amount of bandwidth in use by connections at an instant t.

In the study by Awerbuch et al. the performance has been measured by
throughput and control load. The throughput is defined by the fraction of
attempted connections that were realized. The control load is represented by
the average number of crank-backs per realized connection.

Finally in the study by Liu et al. the performance is determined by the
blocking probability compared to the load on the network.

The different performance measurements make it hard to directly compare
the results of the three studies. However, it is possible to detect a general trend
in the results. As can be expected, the Full Mesh aggregation performs best
in all studies, and the Single-Node aggregation performs worst in most cases
compared to the other strategies.

The Star aggregation strategy has only been examined in the first two stud-
ies. Unfortunately these studies provide conflicting results. In the study by
Guo and Matta the Star aggregation performs as well as or better than the Full
Mesh, while in the study by Awerbuch et al. several Star aggregation strategies
are examined, and they all perform significantly worse than Full Mesh.

The first two studies above have also been performed with ATM networks
in mind, and this does not readily map to inter-domain optical and hybrid net-
works. While both ATM and optical networks are circuit based, the availability
of circuits is different. A request in ATM takes up a portion of an edge, while
in optical networks a request often takes up the whole edge. It is therefore
not completely clear what impact topology aggregation has on inter-domain
pathfinding in optical and hybrid networks. In the next chapter I describe an
emulation experiment and its results to accurately determine this impact.

81

Chapter6
Emulations of Aggregated Network
Topologies

6.1 Introduction
In the previous chapter we have introduced pathfinding using aggregated to-
pologies. We have discussed several studies that have examined the impact of
aggregation on pathfinding. Unfortunately, the combined results of these studies
are not conclusive about the effects. Two of the studies conflict on the perform-
ance of the Star aggregation method. These studies have also been performed
in the context of ATM networks.

In this chapter we examine how topology aggregation can be applied to op-
tical networks. We define how different aggregated views can be created in NDL
from full topology descriptions. The Full Mesh, Star and Single Node aggrega-
tions can automatically be generated from a full NDL topology description.

To accurately determine the effect of the different aggregation strategies we
have implemented an emulation experiment. In this experiment we generate
random inter-domain topologies and do pathfinding on them. We compare the
results of the same pair-sets for the different aggregation strategies and the
control case, using the full topology. We also compare our results with the
earlier results of topology aggregation in ATM networks.

This chapter continues by examining different aggregation methods in the
context of NDL, and defines how these can be created from full NDL descriptions

82 CHAPTER 6. EMULATIONS OF AGGREGATED NETWORK TOPOLOGIES

in section 6.2. The experimental setup is discussed in section 6.3 and section 6.4
shows the results of the experiments. In section 6.5 we finish this chapter with
a discussion of the results.

6.2 Aggregation Methods

As we have shown before, topologies of network domains can be aggregated to
a different degree. In our experiments we examine three different aggregation
strategies, for which we provide the definitions here:

Full View This is the control case, where domains use no aggregation at all
and publish their full topologies,

Full Mesh Domains only publish their edge nodes, the connections between
the edge nodes are described using a full mesh,

Star Domains only publish their edge nodes, the connections between the edge
nodes are described using a virtual central node,

Simple Node The domain is presented as a single node, leaving out all in-
formation about the internal network.

We examine the performance of pathfinding in the different aggregation
methods with the following assumptions:

Single Layer We assume a single layered network. A good understanding of
the impact of aggregation in single-layer topologies might later be of use
also in multi-layer networks, where path finding is an even more complex
problem [70].

Homogeneous Capacity We assume a single unit of bandwidth for all links in
the network. We do allow for multiple connections between nodes, so it is
possible to create a mapping for networks with heterogeneous bandwidths.

Infinite Reservations Another assumption is that a reservation is for an in-
finite amount of time. We generate random topologies, and do multiple
passes of the same topology. This means that the total averaged results
show the trend of how the network performs under increasing load.

AGGREGATION METHODS 83

Aggregated Metric The metric of a link is often used to represent the dis-
tance of that link. On our topologies the metric for all links is 1, even for
links in the aggregated graph which can be based on much longer paths.
This is used to minimize the information about the intra-domain con-
nectivity, but also to maximize the distortion caused by the aggregation.

Inter-Domain Pairs In our experiments we only use source-destination pairs
that are in different domains. Since nodes always have full knowledge of
their own domain, aggregation will not have an effect on intra-domain
pathfinding.

Unlabelled Links Previously we described the study by Liu et al. who have
researched the effect of aggregation on WDM networks with different num-
bers of available wavelengths. We are interested in the general effect of
aggregation on inter-domain pathfinding. In this study we use unlabelled
links.

In the descriptions below we do use a mapping of network topologies onto
graphs. In this case this is possible because we only use a single layer topology,
and for the aggregation methods it is not necessary to identify different inter-
faces. The actual aggregated descriptions are created in NDL, complete with
interface objects.

6.2.1 Formal Definitions of Topology Aggregation
In the previous chapter we have described what different aggregated topologies
look like. However, we have not defined explicitly how to map a full topology
to an aggregated version. Below we formally define how we have implemented
the aggregation strategies in our experiments.

First some notation and definitions. We define a multi-domain topology as
T = (N,D,L):

N is a set of nodes: N = {n1, n2, . . .}

D is a set of domains: D = {d1, d2, . . . , dx} such that:

• Domains are sets of nodes: ∀di ∈ D : di ⊂ N

• All nodes must be part of a domain:
x⋃
i=1

di = N

• Nodes can only be in one domain: ∀di, dj ∈ D : di 6= dj → di∩dj = ∅

84 CHAPTER 6. EMULATIONS OF AGGREGATED NETWORK TOPOLOGIES

L is a set of links: L ⊆ N ×N , we assume bi-directional connections:
∀ni, nj : (ni, nj) ∈ L→ (nj , ni) ∈ L.

A Full Mesh aggregation Tf = (Nf , Df , Lf) of a topology T is defined as follows:

Nf contains only domain-edge nodes:
∀ni, nj ∈ N∃dx, dy ∈ D : (ni, nj) ∈ L ∧ ni ∈ dx ∧ nj ∈ dy ∧ dx 6= dy →
ni, nj ∈ Nf ,

Df is a set of domains Df = {d′1, d′2, . . . , d′x} such that:
∀d′i ∈ Df∀nx ∈ d′i : nx ∈ Nf ∧ ∃!di ∈ D ∧ d′i ⊆ di

Lf is constructed in two steps, first we take all the original inter-domain links:
∀ni, nj ∈ Nf∃dx, dy ∈ D : (ni, nj) ∈ L ∧ ni ∈ dx ∧ nj ∈ dy ∧ dx 6= dy →
(ni, nj) ∈ Lf ,
and secondly we add intra-domain connections based on the original con-
nectivity. Even if multiple paths are available between different edge
nodes, we only add a single link:
(ni, nj) ∈ Lf if there is a path ninx . . . nynj with nx, . . . , ny ∈ d and
(ni, nx), . . . , (ny, nj) ∈ L.

A Star aggregation Ts = (Ns, Ds, Ls) of a topology T is defined as:

Ns contains domain-edge nodes, plus a centre node for each domain:
∀ni, nj ∈ N∃dx, dy ∈ D : (ni, nj) ∈ L ∧ ni ∈ dx ∧ nj ∈ dy ∧ dx 6= dy →
ni, nj ∈ Ns
For each of the domains, we add exactly one centre node:
∀d ∈ D∃!nd : nd ∈ Ns ∧ nd 6∈ N ,

Ds is a set of domains Ds = {d′1, d′2, . . . , d′x} such that:
∀ni ∈ Ns∃dx ∈ D∃d′x ∈ Ds : ni ∈ dx → ni ∈ d′x ∧ d′x ∈ Ds The centre
node is also part of its domain: ∀d ∈ D∃nd ∈ Ns∃d′ ∈ Ds : nd ∈ d′,

Ls is constructed in two steps, first we take all the original inter-domain links:
∀ni, nj ∈ Ns∃dx, dy ∈ D : (ni, nj) ∈ L ∧ ni ∈ dx ∧ nj ∈ dy ∧ dx 6= dy →
(ni, nj) ∈ Ls,
secondly, all the edge nodes are connected to the centre node, if they have
available intra-domain connections:
∀ni ∈ Ns∃dx ∈ D : ni ∈ dx ∧ ∃nk ∈ dx∃ndx ∈ Ns : (ni, nk) ∈ L →
(ni, ndx) ∈ Ls.

A Simple Node aggregation Tn = (Nn, Dn, Ln) of a topology T is defined as:

AGGREGATION METHODS 85

Nn contains only one node per domain: ∀xi=1ni ∈ Nn with x = |D|

Dn contains the same amount of domains, but each only has a single element:

∀di ∈ D∃d′i ∈ Dn∃ni ∈ Nn : d′i = ni and
x⋃
i=1

d′i = Nn with x = |Dn|

Ln contains only the inter-domain links:
∀(ni, nj) ∈ L∃dx, dy ∈ D∃nx, ny ∈ Nn : ni ∈ dx ∧ nj ∈ dy ∧ dx 6= dy →
(nx, ny) ∈ Ln

6.2.2 Topology Aggregation from NDL Descriptions
We can use these logical definitions to create different aggregated views from a
full NDL domain topology description. Below we describe how we select and
transform the NDL objects to create the aggregated views.

For the Full Mesh we take the device objects that have an inter-domain
connection, including their switching matrix. We then describe only the inter-
faces of those devices that have inter-domain connections. For each device we
check whether it is possible to reach the other inter-domain devices through the
domain. If so, we create a new interface object for each, with a connectedTo
statement between them, and we also connect them through the switching mat-
rix. The result is a topology description containing only the edge devices, with
their edge interfaces, and an aggregated description of the intra-domain topo-
logy through the virtual interfaces.

Initially in an unused network, all edge nodes will be able to reach each
other, since domains are usually connected graphs. When more and more links
are reserved it is possible that domains become disconnected graphs. The ag-
gregation method Full Mesh, and Star can describe this, Full Mesh without
updating will not.

In the Star aggregation we also start with the edge devices. We describe
only the interfaces of those devices that have inter-domain connections. We
add a new virtual device to the aggregated graph for the centre of the domain,
the nucleus. For each edge device we check whether it has any intra-domain
interfaces with available bandwidth. If it does, we add a connection between
the device, and the centre node. This results in a topology description containing
only the edge nodes and a (virtual) intra-domain star network.

Also in the Star network, edge nodes will initially be able to reach the intra-
domain network. Once the network usage grows, it is possible that an edge node
will no longer have available internal connectivity. This is reflected in the Star
aggregation, the node then becomes disconnected from the rest of the domain.

86 CHAPTER 6. EMULATIONS OF AGGREGATED NETWORK TOPOLOGIES

This node can still be of service by switching from one of its inter-domain
connections to the other.

The Simple Node topology is simpler to create: We take the network domain
object with the name of the domain, nd in the mathematical description, and
we add a switching matrix object to the network domain object. Then from
the nodes with inter-domain connections we select the interface objects of those
inter-domain connections. We add these interface objects directly to the domain
object. We also copy the inter-domain connectedTo properties of the original
view into the aggregated view, and connect all the interfaces to the switching
matrix. The result is a network domain object with interfaces, which are con-
nected to other domains, and internally connected with a full mesh through the
switching matrix.

This Simple Node topology does not publish any details about the intra-
domain connectivity. Other domains reading this topology will assume that the
intra-domain network is fully connected. Once the network usage increases, it is
possible that the intra-domain network is no longer connected. However, there
is no way to publish this using the Single Node strategy.

6.3 Experimental Setup
We have implemented an experimental setup for testing the different aggregation
methods. The steps in the experiment are as follows:

• Take a number d for the number domains, and n for the number of nodes
in each of the domains,

• Generate a random graph G with d domains, and n nodes,

• Create a randomly ordered list l of inter-domain endpoint pairs,

• For each of the aggregation methods:

– Create a simulated network of the graph G,

– For each pair (x, y) in l, find a path between x and y in the aggregated
view:

∗ If there is no path, continue.
∗ If there is a path:

· Translate the path in the aggregated view to a full path,

EXPERIMENTAL SETUP 87

· If the full path is available, reserve the path and record the
result,

· If the full path is not available, record a false positive

In the rest of this section we describe the details of our experimental setup.
First we describe how we generate the network graphs and the source and des-
tination pairs, and in section 6.3.2 we describe the pathfinding in aggregated
views, and how we translate these paths back to the underlying graph.

6.3.1 Generating the Graphs and Pairs
At the start of each experiment run we generate a random graph and pair-lists.
In the experiment we can use different graph sizes to test the impact of the
number of domains, and the number of nodes per domain.

There are a large number of ways to generate random graphs. Barabási and
Albert have shown in 1999[95] that many complex networks exhibit a scale-free
property. That is, the probability P (k) that a vertex in the network interacts
with k other vertices decays as a power law, following P (k) ∼ k−γ . The value
of γ varies with different types of graphs, but is usually 2 ≤ γ ≤ 3. In case of
the BGP router network, the value of γ ∼ 2.3.

However, it should be noted that it is unclear whether current optical net-
works, such as the GLIF network, are scale-free. The current networks are too
small and nodes have too small degrees to come to a definitive conclusion[96].
We expect that as optical networks grow larger, they will also follow the power-
law distribution.

The graphs are generated using the Barabási-Albert algorithm as implemen-
ted in the NetworkX Python module[97]. This algorithm will generate graphs
with a value of γ that tend to 2.9 ± 0.1. Using this algorithm we generate d
graphs with their n nodes. We then generate another graph with the same al-
gorithm with d nodes, and use that as the inter-domain graph, randomly picking
nodes from each of the domain graphs to provide the inter-domain links. Ana-
lysis of the results of this generation method shows that γ averages to ∼ 2.3,
which is comparable to the BGP network.

In our experiments we then enumerate all the pairs (x, y) where x and y are
in different domains. So in total we have (d ·n) · ((d− 1) ·n) · 12 number of pairs.
And before each run we shuffle this pair-list.

The graph is then converted to an emulated network using our pynt package.
The result of the conversion is the same if the descriptions of the domains would
have been imported from NDL descriptions or from OSPF data.

88 CHAPTER 6. EMULATIONS OF AGGREGATED NETWORK TOPOLOGIES

6.3.2 Pathfinding Using Aggregations

We perform four different pathfinding operations using the same shuffled set of
endpoints pairs on different views of the same graph. We use a full view, a Full
Mesh aggregation with and without updates, a Star aggregation, and a Simple
Node aggregation.

As a baseline we perform pathfinding on the graph using complete inform-
ation of the graph, that is, we work with the full graph. This shows the ideal
situation which the aggregation methods should approximate. As with all the
other aggregation methods, we perform pathfinding using a standard Dijkstra’s
shortest path algorithm.

In the Full Mesh method the topology shows only the boundary nodes.
The intra-domain connections are created by taking each boundary node and
performing a path find call on it to all other boundary node of that domain.
If there is a path between that node and another boundary node, then we
add a connection between those two nodes. The inter-domain connections are
not aggregated, and used as is. The Full Mesh view is recreated before each
pathfinding attempt to reflect the current status of the network.

For each pathfinding attempt on pair (x, y), we add x and y to the aggregated
graph. To connect them we iterate over the boundary nodes of their respective
domains, and if a path can be found to that boundary node, then we add a
connection in the graph.

With the nodes x and y added to the Full Mesh graph, we try to find an inter-
domain path between them. If a path is found in the Full Mesh aggregated graph
we convert each path through a domain by mapping it back to the underlying
path in the full topology. Before moving on the next pair, the source and
destination nodes ,x and y, are removed from the graph, if they are not edge-
nodes.

We also perform the experiment with the same initial Full Mesh view of the
topology, but without any intermediate updates. The updates in this case refer
to the updating of intra-domain topology after a path has been found. Without
the updates it is possible that a path is found in the aggregated graph where
the underlying path is no longer available. In this case we record the result as
a false-positive.

In the Star aggregation method we also keep the boundary nodes, and link
them to a virtual device, the nucleus. The links from a boundary node to the
nucleus is created if the boundary node has any intra-domain connectivity avail-
able. After each successful reservation we check the intra-domain connectivity
again and perform updates where needed.

RESULTS OF THE EMULATIONS 89

The last aggregation method is to collapse domains into a Simple Node in the
aggregated graph. We have implemented this by creating an aggregated view of
the graph with only domains. The inter-domain interfaces of the boundary nodes
are added to aggregated graph, along with their connections. As noted before,
the Simple Node view does not provide details about the intra-domain network.
Once the network usage increases, it is possible that the domain becomes a
disconnected graph. If a path request in the aggregated view traverses such a
domain and can not be translated to an underlying path, we record the result
as a false-positive.

For each pathfinding attempt on pair (x, y) in the Star and the Simple Node
aggregation we add x and y to the aggregated graph with a connection to their
centre and domain nodes respectively. If a path is found between x and y we
convert that path into a full path by replacing each domain hop in the path
with the result of a path find operation between the boundary interfaces of that
domain. If the complete path can be converted it is reserved. If no path can be
found within one of the domains, we record a false-positive. Before moving on
to the next pair, the nodes x and y are removed from the graph.

Note that the Full Mesh without update is very similar to the Simple Node
method. The Full Mesh without update shows the edge nodes, with a full mesh
between them. The Simple Node graph only shows a single point, implicitly
assuming full connectivity between all its inter-domain interfaces.

Note also that regardless of what kind of intra-domain updating occurs, all
of the aggregation methods do update the inter-domain connectivity.

6.4 Results of the Emulations
In each experiment run, when a path is found, we record the result (success or
false-positive), length of that path, and the new resource usage of the network.
From each run we have a large set of results (104 data points per aggregation
method).

Since we are using results from experiments with different graph sizes, we
normalize the results by using a relative index on the pair number. So the first
pair has a relative index of 1 divided by the total number of pairs. This puts
all results on a scale between 0 and 1. The resource usage numbers have also
been normalized to their total graph sizes.

We analyse our results using the R statistical analysis tool[98]. We use
the coefficient of determination (R2) to determine the goodness of fit of our
fit functions. This is calculated using the formula given in equation 6.1 where

90 CHAPTER 6. EMULATIONS OF AGGREGATED NETWORK TOPOLOGIES

SSerrors and SStotal are the sum of squares of the errors and the total sum of
squares, yi and ŷi are respectively the observed and predicted value, and ȳ is the
mean of the observed values. R2 indicates the explained variance of a model,
and measures how well future outcomes are likely predicted by the model. The
result is a number between 0 and 1, where a value of 1 means that the model
explains all the variability of the data.

R2 = 1− SSerrors
SStotal

= 1−

∑
i

(ŷi − yi)2∑
i

(yi − ȳ)2
(6.1)

6.4.1 Fit Functions
Before we examine the performance of the different aggregation strategies, we
first inspect the behaviour of our control case, pathfinding using the complete
view. The length of the paths will behave differently as the network is gradually
filled up. Figure 6.1 shows a scatterplot of the path length development. We can
see that initially it is fairly stable, the network is still empty, almost any path
will succeed, and paths will start at the average path length in that network,
and gradually increase. As the network starts to fill up, most requests will still
succeed, but the path length peaks as longer and longer detours are taken. This
grows until the network becomes nearly saturated, meaning that large parts
of the network are in use. Then only small disconnected parts of the network
remain available, and the chance of success depends on the distance in the
network. The path lengths will gradually decrease to the minimum, i.e. paths
between neighbours.

To show the combined effects of the path length and the success rate we plot
the development of inter-domain resource usage over the successive requests,
see figure 6.2. There are two different behaviours, the initial increase in path
lengths, and the slow decrease once the network reaches a saturation point.
Therefore we use two different functions for fitting to the results. We determine
the split by the path length peak, the peak and everything before is the first
part, and afterwards is the second part.

Initially there is a constant success rate, and the path length increases lin-
early, and the inter-domain usage also increases linearly. We use a linear function
starting at zero to fit with, as shown in equation 6.2. This fit explains roughly
90% of the variance, and is shown in figure 6.3.

InterDomainUsage = A · RelativeIndex (6.2)

RESULTS OF THE EMULATIONS 91

Figure 6.1: A scatterplot showing the path length distribution in full view
pathfinding

Figure 6.2: A scatterplot showing the two different phases in inter-domain
resource usage distribution in full view pathfinding

92 CHAPTER 6. EMULATIONS OF AGGREGATED NETWORK TOPOLOGIES

In the second part of the plot the behaviour is dictated by a decreasing
success rate, and path length. Initially we presumed that this behaviour could
be predicted using a standard growth function towards an asymptote as shown
in equation 6.3. In this case the asymptote is a completely filled network where
the inter-domain usage is 1.

InterDomainUsage = 1−A · e(−B·RelativeIndex) (6.3)

The fitted function shows a reasonable result, explaining about 87% of the
variance. However, if we overlay this function to the scatterplot of the results,
it clearly shows a different trend than the actual results. The trend shows more
of a logarithmic form, so we have also fit the function given in equation 6.4.
This fit shows a much better result, explaining over 94% of the variance.

InterDomainUsage = A · log(RelativeIndex) +B (6.4)

Both fits are shown on the scatterplot in figure 6.4, with the exponential fit in
red, and the logarithmic fit in green. The only caveat with the second fit is that
it over-predicts when the network has been nearly filled. However, the paths
in that final section will all be very short ones, regardless of the aggregation
strategy. We expect to see most significant differences in the first part of this
second section.

6.4.2 Domain Sizes

In our experiments we have also examined the effect of domain sizes on the
results. In figure 6.5 we show the initial fits for (d = 50, n = 5) and (d = 50, n =
50), in figure 6.6 the fits for the second section. Note that the horizontal scale
is different for each of the plots. The fitted values (A,B), the error (σ), and the
explained variance (R2) are shown in tables 6.1 and 6.2.

Both graphs show a very similar performance of the aggregation methods.
However, the performance difference is larger in the configurations with less
nodes per domain. Part of this difference can be explained by the different
ratio of the number of pairs to inter-domain resources. However this would
only cause the graphs to shift on the scale, keeping the relative difference. The
smaller difference between the fitted lines with (d = 50, n = 50) can only be
explained by the increase in intra-domain resources. Since we are interested in
the performance difference of the different aggregation strategies, we will use
small domain sizes.

RESULTS OF THE EMULATIONS 93

Figure 6.3: A scatterplot showing only the initial linear growth section, along
with the fitted function in full view pathfinding

Figure 6.4: A scatterplot of the inter-domain resource usage distribution in
full view pathfinding, along with the exponential fit in red, and the logarithmic
fit in green.

94 CHAPTER 6. EMULATIONS OF AGGREGATED NETWORK TOPOLOGIES

0.0000 0.0005 0.0010 0.0015

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Consecutive Path Requests (Normalized)

In
te

r-
D

om
ai

n
R

es
ou

rc
e

U
sa

ge

Full
Full Mesh
Star
FM No Update
Single Node

(a) (d = 50, n = 5)

0e+00 2e-06 4e-06 6e-06 8e-06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Consecutive Path Requests (Normalized)

In
te

r-
D

om
ai

n
R

es
ou

rc
e

U
sa

ge

Full
Full Mesh
Star
FM No Update
Single Node

(b) (d = 50, n = 50)

Figure 6.5: Plotted fits for the initial growth phase for (d = 50, n = 5) and
(d = 50, n = 50)

Strategy A σ R2

Full 930 3.6 0.97
Full Mesh 896 3.3 0.97

FM no updates 497 3.0 0.92
Star 544 3.2 0.93

Single Node 518 3.3 0.92
(a) (d = 50, n = 5)

A σ R2

88026 308 0.98
89184 332 0.98
84374 324 0.97
86646 314 0.98
84715 315 0.98
(b) (d = 50, n = 50)

Table 6.1: Fitted values in the initial growth phase

RESULTS OF THE EMULATIONS 95

Strategy variable value σ R2

Full A 0.1015 0.0004 0.89
B 1.1727 0.0027

Full Mesh A 0.1016 0.0004 0.90
B 1.1594 0.0024

FM no updates A 0.1058 0.0003 0.93
B 1.1535 0.0019

Star A 0.1059 0.0004 0.91
B 1.1561 0.0026

Single Node A 0.1053 0.0003 0.94
B 1.1386 0.0017

(a) (d = 50, n = 5)

Strategy variable value σ R2

Full A 0.1236 0.0008 0.85
B 1.9416 0.0095

Full Mesh A 0.1223 0.0008 0.85
B 1.9196 0.0094

FM no updates A 0.1220 0.0008 0.85
B 1.913 0.009

Star A 0.1280 0.0008 0.87
B 1.9853 0.0092

Single Node A 0.1211 0.0008 0.85
B 1.9005 0.0094

(b) (d = 50, n = 50)

Table 6.2: Fitted values in the logarithmic growth phase

96 CHAPTER 6. EMULATIONS OF AGGREGATED NETWORK TOPOLOGIES

0.00 0.05 0.10 0.15

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Consecutive Path Requests (Normalized)

In
te

r-
D

om
ai

n
R

es
ou

rc
e

U
sa

ge

Full
Full Mesh
Star
FM No Update
Single Node

(a) (d = 50, n = 5)

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Consecutive Path Requests (Normalized)

In
te

r-
D

om
ai

n
R

es
ou

rc
e

U
sa

ge

Full
Full Mesh
Star
FM No Update
Single Node

0 0.0001 0.0002 0.0003 0.0004 0.0005

(b) (d = 50, n = 50)

Figure 6.6: Plotted fits for the logarithmic growth phase for (d = 50, n = 5)
and (d = 50, n = 50)

The smaller domain sizes also more closely follow the current real-world
situation. The global GLIF network currently consists of several dozen networks,
most of which consist of only several nodes. The largest domain in GLIF is
currently the Internet2[99] network, which consists of about 15 nodes.

The number of domains does not have an impact on the difference in the
aggregation strategies. However, using more domains means that there are will
be more nodes in the whole network, so there will be more available pairs. The
more pairs, the more fine-grained the results will be. To keep things scalable
we have chosen to use scenarios with 150 domains. For the remainder of this
chapter we have therefore used a configuration with (d = 150, n = 5).

6.4.3 Results on Inter-Domain Pathfinding

With the fit functions selected, we can examine the performance of inter-domain
pathfinding in the different aggregation strategies. In figure 6.7 we show the fits
for the results on the graphs with (d = 150, n = 5). Table 6.3 shows the fitted
values, along with their errors, and the coefficient of determination.

RESULTS OF THE EMULATIONS 97

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Consecutive Path Requests (Normalized)

In
te

r-
D

om
ai

n
R

es
ou

rc
e

U
sa

ge

Full
Full Mesh
Star
FM No Update
Single Node

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

(a) Initial growth phase

0.00 0.02 0.04 0.06 0.08 0.10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Consecutive Path Requests (Normalized)

In
te

r-
D

om
ai

n
R

es
ou

rc
e

U
sa

ge

Full
Full Mesh
Star
FM No Update
Single Node

(b) Logarithmic growth phase

Figure 6.7: Fits of initial and logarithmic growth phases for (d = 150, n = 5)

98 CHAPTER 6. EMULATIONS OF AGGREGATED NETWORK TOPOLOGIES

Strategy A σ R2

Full 3649 7 0.98
Full Mesh 3409 6 0.98

FM no updates 1263 6 0.90
Star 1591 7 0.9

Single Node 1145 6 0.91
(a) Initial growth phase

Strategy variable value σ R2

Full A 0.0857 0.0002 0.91
B 1.1451 0.0017

Full Mesh A 0.0858 0.0002 0.92
B 1.1322 0.0015

FM no updates A 0.0912 0.0001 0.95
B 1.1331 0.0011

Star A 0.0908 0.0002 0.93
B 1.1355 0.0015

Single Node A 0.0926 0.0001 0.96
B 1.1250 0.0009

(b) Logarithmic growth phase

Table 6.3: Fitted values in the initial and logarithmic growth phases for (d =
150, n = 5)

RESULTS OF THE EMULATIONS 99

Initial Linear Growth Phase The graph of the first section in figure (a) shows the
initial growth. Recall that the boundary for the first section is determined by
the peak in the path lengths. The fitted graphs all end around 60% resource
usage, however the more aggregated the longer it takes to get there. The results
in table (a) also show that the Full Mesh aggregation strategy performs very
close to the Full View, and that there is a large gap in performance with the
other aggregation strategies. Of these the Star aggregation performs better than
the last two, the Full Mesh without updates, and Single node, which both show
very similar performance.

Logarithmic Growth Phase The same difference in performance continues in the
second section of the fit. The Full Mesh aggregation performs almost perfectly
compared to the control. However, here the difference with the other strategies
is far less pronounced. The Star aggregation method shows a significantly lower
performance, with the Full Mesh without updates just below it. The Single Node
aggregation method clearly performs worst of all the aggregation methods.

Full Full Mesh FM No Update Star Single Node

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fa
ls

e
P

os
iti

ve
 F

ra
ct

io
ns

Figure 6.8: The fraction of false positives in the linear and logarithmic phases
for (d = 150, n = 5)

False Positives In figure 6.8 we show the fraction of false positives in a bar-
plot. It should be noted that these false positives only occur in the logarithmic
growth phase. None of the aggregation methods show false positives in their
linear growth phase.

It is not possible to have false positives with the full view, nor with the

100 CHAPTER 6. EMULATIONS OF AGGREGATED NETWORK TOPOLOGIES

Full Mesh view with updates. In the latter case, the update mechanism always
makes the graph reflect the current availability in the network. The number of
false positives is extremely high in the aggregation strategies without detailed
intra-domain connectivity in the logarithmic growth phase. When the Single
Node is used, only 1 in 10 attempts will result in an actual path. Even with
the Star aggregation, which shows some intra-domain details, over 75% of the
attempts is a false positive result. This clearly shows that once the network
resources becomes less and less available, detailed knowledge of intra-domain
connectivity is required in order to provide accurate results for inter-domain
pathfinding .

False Negatives We have also examined the false negatives in the aggregation
strategies. To examine this, we have slightly adjusted our experiments. At first
we perform a normal run on the full graph, but now we record which pairs form
a successful path. Then we use only these pairs in the aggregated views of the
graph. Figure 6.9 shows the results, the diagonal describes perfect performance.
The difference between the diagonal and each of the aggregation methods is the
number of false negatives. In this case the plots were created by using non-linear
least squares fitting with the following function:

#SuccessfulPaths = A · index +B · index 2 (6.5)

The graph in figure 6.9 shows that initially the Full Mesh strategy shows
very little false negatives. This number increases as more and more paths are
reserved, even up to the point where it is finally overtaken by the other aggreg-
ation strategies.

In figure 6.10 we show a box-plot of the path lengths for the aggregation
strategies with only the success pairs. There we can see that the paths in Full
Mesh are significantly longer than in the other strategies, and they are also
slightly longer than in the control. These longer paths take up more resources,
and therefore make it less likely that successive paths will succeed. In the other
strategies the successful paths are somewhat shorter. The initial longer paths
fail, keeping more resources available so that the later shorter paths will succeed.

6.5 Discussion and Conclusion
In this chapter we have examined what kind of impact aggregation has on the
performance of inter-domain pathfinding. We have described different aggrega-
tion methods, and performed experiments to test and quantify this impact.

DISCUSSION AND CONCLUSION 101

0 20 40 60 80 100 120

0
20

40
60

80
10
0

12
0

Index

N
um

be
r o

f s
uc

ce
ss

fu
ll

pa
th

s
Full
Full Mesh
FM No Update
Star
Single Node

Figure 6.9: The fitted functions describing the sum of successful path requests

Full Full Mesh FM No Update Star Single Node

0
10

20
30

40

P
at
hl
en
gt
h

Figure 6.10: A box plot for the lengths of only the paths that succeeded in the
full view

102 CHAPTER 6. EMULATIONS OF AGGREGATED NETWORK TOPOLOGIES

Strategy variable value σ R2

Full Mesh A 0.934 0.004 0.98B 0.00233 0.00005

FM no updates A 0.603 0.004 0.98B 0.00134 0.00004

Star A 0.652 0.004 0.98B 0.00057 0.00005

Single Node A 0.517 0.004 0.98B 0.00191 0.00004

Table 6.4: Fitted values and their error for false negatives in (d = 150, n = 5)

Our analysis in the previous section clearly show that aggregation does in-
deed have an impact on the performance of inter-domain pathfinding. In the
initial linear growth phase the Full Mesh aggregation strategy performs close to
the Full View. The other aggregation strategies perform significantly worse.

This difference in performance becomes much smaller in the logarithmic
growth phase, where the growth of inter-domain resource usage in all aggrega-
tion strategies is very similar. However in this phase the number of false posit-
ives in the aggregation methods without accurate intra-domain connectivity is
extremely high. This means that once the network becomes reasonably filled,
these aggregation strategies become almost unusable without a way of filtering
out these false positives.

A possible way of using the information from false positives is by using
crank-backs. This method of locally updating the view of the topology using
false-positive information ultimately creates a similar view on the graph as the
Full Mesh method does. The difference is that with crank-back the majority of
the effort of creating the updated graph lies with the requester. The resulting
graph is also not shared with the other domains. The load of pathfinding is
then shifted from the domains, performing less updates, to the source, which
has to perform the crank-backs. We have seen from the false-positive results
that clients will very often have to perform these crank-backs.

An argument that is often used in favour of aggregation is scaling: finding
paths in large detailed graphs takes more time than finding a path in an aggreg-
ated graph. This argument fails to take the cost of constructing and updating
the aggregated graph into account. In the case of the Full Mesh graph with
updates, the cost of maintaining the graph is distributed over all the domains.
The total distributed processing time is then higher than finding a path in a

DISCUSSION AND CONCLUSION 103

full detailed graph. In the Star, Simple Node, or Full Mesh without it is less
hard to maintain the aggregated topologies, but these views show a very large
number of false-positives. To get a reasonable performance in these strategies,
crank-backs will have to be used, which will be very time consuming.

It is somewhat difficult to compare our results to the results of Awerbuch
et al. since they use crank-backs. However, the general performance trends in
their results are similar to ours. Full Mesh (‘Complete’ in their terminology)
performs best, while both their Star aggregation methods show a slightly worse
performance.

Comparing our results to the results of Guo and Matta, we see a significant
difference in the performance of the Star aggregation. In their study the Star
performs almost equally with the Full Mesh aggregation, while both in Awer-
buch et al. and our results the Star aggregation performs significantly worse.
Unfortunately, we cannot reproduce their results, even when using their topo-
logy we see a significant difference between the Full Mesh and Star aggregations.
Our results are shown in figure 6.11 and fitted values are in table 6.5. The high
inter-domain connectivity in their topology makes the network saturation occur
very late in our results, this is why we only use the linear fit.

104 CHAPTER 6. EMULATIONS OF AGGREGATED NETWORK TOPOLOGIES

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Consecutive Path Requests (Normalized)

In
te

r-
D

om
ai

n
R

es
ou

rc
e

U
sa

ge

Figure 6.11: The performance of the different aggregation methods on the
topology of Guo and Matta.

Strategy A σ R2

Full 0.915 0.001 0.99
Full Mesh 0.902 0.001 0.99

FM no updates 0.504 0.001 0.98
Star 0.595 0.001 0.98

Single Node 0.393 0.001 0.98

Table 6.5: Fitted values and their error for the topology of Guo and Matta

105

Chapter7
Summary and Conclusion

The provisioning of an inter-domain lightpath is currently still a complicated
process. The user must formulate a request to the provider. The provider then
checks availability in the network, and must figure out a path through the inter-
domain network. Each of the domains then check their availability in turn, and
if the destination is reachable, the lightpath is provisioned. Once the lightpath
is working, it is delivered to the end user.

The different parties involved in the provisioning process mostly commu-
nicate ad hoc through telephone and email. This allows many opportunities
for mistakes, or misunderstanding, complicating the provisioning and the mon-
itoring processes. This thesis provides contributions towards facilitating the
inter-domain network provisioning process. We have divided this in two parts,
first creating a clear and inter-operable description of the network, and second
to examine the impact of aggregating topology information on the performance
of pathfinding.

In the first part of this thesis we have examined the problem of describing
computer networks. In chapter 2 we have described requirements for creating
interoperable descriptions of computer networks. We have used these require-
ments to evaluate existing ways of representing computer networks. None of
these representations satisfy all of the requirements.

In chapter 3 we have presented our Network Description Language (NDL).
The beginning of the chapter describes the first version of NDL, which provides
a simple ontology to describe network topologies. While the vocabulary is small,

106 CHAPTER 7. SUMMARY AND CONCLUSION

it is already very powerful.
Based on our experiences with the first version of NDL and based on related

work on GMPLS, we have extended NDL to describe multi-layer networks.
After extensive study of the ITU-T G.805 standard we have concluded that it is
possible to create a technology-independent description of multi-layer networks
with NDL. Inspired by the theory in ITU-T G.805 we have created multi-
layer NDL. Multi-layer NDL provides a vocabulary to independently describe
technologies. These technology descriptions can then be referenced from multi-
layer topology descriptions.

In chapter 4 we have shown several of our applications that show new possib-
ilities with the use of NDL. We have gained valuable experience and feedback
from our development of applications and tools to support and manage real-
world networks using NDL. Our choice for RDF was first put to the test when
we developed generators and validators. Descriptions in RDF can be very verb-
ose, but our generators and validators proved to be simple and adequate solu-
tions. Furthermore, our Python NDL Toolkit (pynt) has lowered the boundary
of developing applications using NDL. The toolkit has also allowed us to rapidly
prototype ideas and has been a valuable input for the continued improvement
of NDL.

In summary, NDL provides a distributed information model for the descrip-
tion of topologies for inter-domain pathfinding. So this allows us to give a pos-
itive answer to the first research question: It is possible to create a distributed
information model for the description of topologies for inter-domain pathfinding.

Network operators do not always wish to share their full topology, either for
security, business, or for scalability reasons. On the other hand it is necessary to
share some degree of topology data to enable inter-domain lightpath planning.
A solution is to publish aggregated versions of the network topologies. In the
second part of this thesis we have examined the impact of aggregation on the
performance of inter-domain pathfinding.

In chapter 5 we have described different methods for aggregating domain to-
pologies, the Full Mesh, Star and Single Node strategies. We have summarized
three earlier publications on pathfinding in aggregated topologies. Unfortu-
nately these studies use different measures for performance, and are therefore
hard to compare. Even when comparing the general trends, they show some
conflicting results on the performance of the Star strategy.

In order to better quantify the performance impact of topology aggrega-
tion in optical networks, we have performed our own experiments. Chapter 6
describes our experimental set up, and shows the results of putting different
strategies to the test. This has allowed us to accurately determine the impact

THE ROAD AHEAD 107

of different aggregation strategies on inter-domain pathfinding.
Based on our results we can give an affirmative answer to the second research

question: topology aggregation does indeed have an impact on pathfinding, albeit
not a great impact.

If the Full Mesh strategy is used, and the topology description is often up-
dated to reflect the current availability, then there is almost no difference in
performance compared to having all the available information. Of course, a
Full Mesh aggregation that is often updated maintains all the information rel-
evant for inter-domain pathfinding. If no updates are performed, then the Star
aggregation should be used. The pathfinding will suffer an impact from the
aggregation, but the Star strategy performs better than a Full Mesh without
updates. The Single Node strategy performs worst, even worse than the Full
Mesh without updates. The experiments and our analysis of the results show
the way that topology aggregation has an impact on inter-domain pathfinding,
providing an answer to the second research question.

7.1 The Road Ahead

7.1.1 RDF Infrastructure Descriptions

In our view the next step in network descriptions is the definition of ontologies
that can cover the whole end-to-end infrastructure: from the actual content be-
ing distributed to the Storage elements holding the data to the CPUs rendering
the images and the display to visualize it. Figure 7.1 illustrates the concept of
RDF representation of all this elements forming the overall infrastructure.

Our vision is that a media content locator will be able to consume the de-
scriptions of all the architectural components that form the end-to-end infra-
structure. From this information it will build the optimal paths from the storage
elements to the visualization displays, making the inter-domain lightpath pro-
visioning a piece in the overall orchestrated effort. The use of RDF allows easy
extension of the topology and domain schema with other schemata.

Our vision is that an application will be able to consume the descriptions of
all the architectural components that form an end-to-end infrastructure. This
information includes computing resources, storage resources, visualization re-
sources, network resources, content descriptions, et cetera. All resources can be
linked with loose couplings to allow a meta-scheduler application to orchestrate
all resources together in a combined effort [7].

108 CHAPTER 7. SUMMARY AND CONCLUSION

CG/
RDF

CG/
RDF

ST/
RDF

NDL/
RDF

NDL/
RDF

CPU/
RDF

VIZ/
RDFseeAlso

see
Also

seeAlso

seeAlsoseeAlso

content
content

seeAls
o

Figure 7.1: RDF Infrastructure Descriptions

7.1.2 Topology Aggregation
In our experiments we have not used a crank-back algorithm, however we expect
it to give similar results as the Full Mesh view with updates. The crank-back
algorithm provides a way of using information about false-positive failures to
do recalculation. Effectively this allows a requester to get the same level of
information for path computation as with constant updates. The difference is
that the main burden of computation is then moved from the domain to the
client. Another point for future research is inserting a delay in the propagation
of domain updates, so that we can confirm earlier results of Awerbuch et al.

Another open issue is mixed aggregation strategies, our experiments used the
same aggregation strategy for all domains. In practice different domains will
make different choices for topology aggregation. It could be investigated what
effect this will have on the performance of the inter-domain network pathfinding.

Multi-layer pathfinding in optical networks is currently a topic of research[70].
For now, this pathfinding is based on full topology information, since this is a
very hard problem in itself. An open issue is defining aggregation strategies
for multi-layer topologies. It is far from trivial to apply aggregation to multi-
layer topologies. Besides the connectivity information that is aggregated, the
encoding and the adaptation capabilities must also be considered.

THE ROAD AHEAD 109

110

111

AppendixA
Translation Specification of
OSPFv2 LSAs to NDL

A.1 Introduction
The OSPF protocol is one of the main protocols in use in routers today. It
defines a way for routers to discover and communicate with each other, in order
to collectively and simultaneously learn the network topology. The routing
algorithms in OSPF require that each of the routers maintain a database of the
full topology.

Messages between routers are exchanged using OSPF packets. OSPF version
2 defines five different kinds of packets.

1. Hello

2. Database Description

3. Link State Request

4. Link State Update

5. Link State Acknowledgment

6. Opaque Link State Announcements

112 APPENDIX A. TRANSLATION OF OSPF TO NDL

The first two packets are used in the discovery and first synchronization
process. When a new router joins the OSPF topology it sends out a Hello
discovery packet. To kick start the joining router an adjacent router sends over
his complete database using the Database Description packet.

The next three are used to request and send updated information about the
topology. The topology information itself is represented in a structure called a
Link State Announcement (LSA). In this appendix we define how we translate
all the information in the LSAs to the NDL syntax. The other data in the OSPF
packets is only used to ensure correct delivery of the LSAs. We assume that the
LSAs we receive have been delivered correctly, so we ignore the other data.

There are different types of LSAs:

1. Router LSA

2. Network LSA

3. Summary LSA (IP Network)

4. Summary LSA (Autonomous System Boundary Router)

5. Autonomous System External LSA

In the rest of this appendix we first examine the generic header of LSAs,
and then successively examine each type of LSA.

A.2 Generic LSA Header
The generic LSA Header structure is shown in figure A.1. The diagram shows
the fields of the header and their lengths in bits, using lines of 32 bits length.

The first field (LS Age) is an integer value that, together with the LS se-
quence number, is used to ensure that topology data eventually goes ‘stale’ and
is removed. The Options field is used to relay optional capabilities of routers1,
these are not relevant to the topology, so we ignore them.

The last two fields (LS Checksum, and length) are used to ensure correct
delivery of an LSA.

The value of LS type is used to distinguish between the different types of
LSAs. The type of the LSA also impacts the interpretation of the Link State
ID and the Advertising Router fields.

1The options field contains the following bits: E (flooding of AS-External-LSAs), MC (for-
warding of multicast), N/P (Handling of type 7 LSAs), EA (handling External Attribute LSAs),
DC (handling demand circuits).

LSA TYPE 1: ROUTER LSAS 113

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| LS age | Options | LS type |
+-+
| Link State ID |
+-+
| Advertising Router |
+-+
| LS sequence number |
+-+
| LS checksum | length |
+-+

Figure A.1: The generic LSA Header

A.3 LSA Type 1: Router LSAs
Each router describes his links to an area using a single router LSA. The LSA
describes the status and metric cost of the interfaces of the router.

The first type of LSAs are Router LSAs. The values of Link State ID and
Advertising Router are in this case identical and set to the sending Router’s
ID. Following the LSA Header the content of a Router LSA is shown in fig-
ure A.2.

The first line contains three bit-flags, surrounded by padding. The bits
represent properties of the router sending the LSA:

V Virtual link endpoint; The router is an endpoint of virtual links, which have
this area as Transit area.

E External; This bit is set when the advertising router is an AS boundary
router.

B Border; The advertising router is an area border router when this bit is set.

In summary these bits are only relevant for distributing routes through dif-
ferent areas, and are not directly related to topology. The flag bits is followed
by the specification of the number of links present in the LSA. Each link is of a
type between one and four, and the meaning of each field depends on the type:

114 APPENDIX A. TRANSLATION OF OSPF TO NDL

+-+
| 0 |V|E|B| 0 | # links |
+-+
| Link ID |
+-+
| Link Data |
+-+
| Type | # TOS | metric |
+-+
| ... |
+-+
| TOS | 0 | TOS metric |
+-+
| Link ID |
+-+
| Link Data |
+-+
| ... |

Figure A.2: The Router LSA body structure

LSA TYPE 1: ROUTER LSAS 115

1. Point-to-Point connection to another router (unnumbered)

Link ID: Neighboring router’s Router ID
Link Data: The interface’s MIB-II ifIndex value

2. Connection to a transit network

Link ID: IP Address of the Designated Router
Link Data: The router interface’s IP address

3. Connection to a stub network

Link ID: IP network/subnet number
Link Data: The IP network/subnet mask

4. Virtual Link

Link ID: Neighboring router’s Router ID
Link Data: Router interface’s IP address

Each Link also carries a metric section, which specifies the link metric
(metric), and the number of additional metrics (# TOS). Each TOS is defined
on a separate line containing the IP Type of the service (TOS), followed by a pad-
ding byte and the TOS-specific metric information. The TOS metrics are not
used widely, they are only included for backwards compatibility with OSPFv1.

A.3.1 Translation to NDL
From a Router LSA we can extract the following topological information:

• There is a device R with name dev + Advertising Router. We add the
prefix here to avoid the clash with the interface of the router with that
IP-address.

• For each link segment we can conclude that the router R hasInterface I
with metric metric.

• The name of the interface I depends on the link type value:

1. p + Advertising Router + p + Link ID This is an unnumbered in-
terface, and is connectedTo an interface I ′ called p + Link ID + p
+ Advertising Router.

116 APPENDIX A. TRANSLATION OF OSPF TO NDL

+-+
| Network Mask |
+-+
| Attached Router |
+-+
| ... |

Figure A.3: The body structure of a Network LSA

2. Link Data connectedTo a broadcast segment BC called bc + Link
ID.

3. stub + Advertising Router + net + Link Id The interface is con-
nectedTo a broadcast segment BC called stub + Link ID.

4. Link Data connectedTo interface I ′ of device R′, called dev + Link
ID. The name of interface I ′ can only be determined once we receive
a matching Link description of R′.

Note that we have ignored the TOS metric. While the TOS metric fields are
still present in OSPFv2 LSAs, they are only supported for backward compatib-
ility and are never used in practice.

A.4 LSA Type 2: Network LSAs
Network LSAs are originated for broadcast and NBMA networks in areas where
there are two or more routers. The Network LSA is sent by the designated
router for the area. The Link State ID is in this case set to the IP address
of the DR’s interface in the network, and the Advertising Router is the DR’s
router ID. Following the LSA header, the Network LSA is rather simple, as
shown in figure A.3.

The Network Mask contains the mask for the network, after which the IDs
of the attached routers are listed, including the DR.

A.4.1 Translation to NDL
From a Network LSA we can extract the following topological information:

• There is a router R with router ID Advertising Router, which we call
dev + Advertising Router.

LSA TYPE 3 & 4: SUMMARY LSAS 117

+-+
| Network Mask |
+-+
| 0 | metric |
+-+
| TOS | TOS metric |
+-+
| ... |

Figure A.4: The body structure of a Summary LSA

• R hasInterface I, which is called Link State ID. This interface is connec-
ted to the broadcast segment BC called bc + Link State ID.

• For each of the values of Attached Router we can conclude:

– There is a device R′ called dev + Attached Router.
– R′ has also sent out a Type 1 LSA, listing (an) interface(s) I ′, which

is already connectedTo broadcast segment BC.
– For each of the above interfaces I ′ of R′ we add a connectedTo from

the broadcast segment BC to that interface.

A.5 LSA Type 3 & 4: Summary LSAs
LSA Types 3 and 4 are summary LSAs. These LSAs are originated by area
border routers and are used to distribute network routes to destinations outside
the area. Note that this means that these LSAs are only sent when the OSPF
network contains multiple areas. Type 3 LSAs are used for routes to other areas
, while type 4 are used for AS external routes. An example is a default route
to an AS border router, which means that any traffic for which no other route
is defined is routed to that AS border router.

The only difference in the summary LSAs is in the meaning of the LSA Link
ID, for type 3 this contains the IP network number, while in type 4 this contains
the AS boundary router’s Router ID. The Advertising Router field is always
the area’s border router. The structure of the summary LSAs after the generic
header is shown in figure A.4.

The Network Mask contains the mask of the route that is being advertised,
and the metric, TOS, and TOS metric are of the same format as in type 2 LSAs.

118 APPENDIX A. TRANSLATION OF OSPF TO NDL

A.5.1 Translation to NDL
From a type 3 Summary LSA we can extract the following topological inform-
ation:

• There is a device R with router ID Advertising Router, which we call
dev + Advertising Router.

• R hasInterface I called Advertising Router + if + LSA Link ID. This
interface has a metric of metric.

• Interface I is connectedTo a Network Domain ND called nd + LSA Link
ID.

From a type 4 Summary LSA we can extract the following:

• There is a device R named dev + Advertising Router, and a device R′
named dev + LSA Link ID.

• R is connected through an abstracted link with R′, with interface I .

• I has a metric of metric.

Note that we have ignored the TOS metric. While the TOS metric fields are
still present in OSPFv2 LSAs, they are onlly supported for backward compat-
ibility and are never used in practice.

A.6 LSA Type 5: AS External LSAs
The last type of OSPF v2 LSAs are AS External LSAs. These LSAs are ori-
ginated by AS boundary routers to describe destinations external to the AS.
Contrary to other LSAs the AS External LSAs are flooded over the entire rout-
ing domain. When multiple areas are used, the information from a type 5 LSA
is not sufficient, because routers in other areas will not know how to reach the
boundary router. In this case the type 4 LSAs are used to distribute additional
reachability information.

The Advertising Router is the router ID of the AS boundary router, and
the Link State ID is used to describe the destination network number, or
0.0.0.0 for the default route. The structure of the AS External LSA after
the header is shown in figure A.5

The fields have the following meaning:

LSA TYPE 5: AS EXTERNAL LSAS 119

+-+
| Network Mask |
+-+
|E| 0 | metric |
+-+
| Forwarding address |
+-+
| External Route Tag |
+-+
|E| TOS | TOS metric |
+-+
| Forwarding address |
+-+
| External Route Tag |
+-+
| ... |

Figure A.5: The body structure of an AS External LSA

Network Mask The network mask for the destination network or 0.0.0.0 in
case of the default route.

E This flag signals whether the metric is a Type 1 (off) or 2 (on) external
metric. In case of type 2, the metric is always considered to be higher
than any internal metric.

metric The value of the metric.

Forwarding Address Data for the described destination should be forwarded
to this address. If it is set to 0.0.0.0, use the address Advertising
Router.

External Route Tag This field is not used by the OSPF protocol itself, but is
used for communication between AS boundary routers.

TOS For each TOS value, different destinations can be defined, using the similar
fields as above.

120 APPENDIX A. TRANSLATION OF OSPF TO NDL

A.6.1 Translation to NDL
From a type 5 AS External LSA we can extract the following topological in-
formation:

• There is a device R with Router ID Advertising Router, which we call
dev + Advertising Router.

• If Forwarding Address equals 0.0.0.0, the router is in the same area,
and we already know how R is connected to the rest of the network.

• R hasInterface I with an abstract connection to the interface I ′ Forwarding
Address a router R′.

• A Network Domain ND called nd + Link State ID.

• I has a metric of metric.

Note that we have ignored the TOS metric. While the TOS metric fields are
still present in OSPFv2 LSAs, they are only supported for backward compatib-
ility and are never used in practice.

121

AppendixB
Translation Specification of
OSPFv2 Traffic Engineering LSAs
to NDL

B.1 Introduction

OSPFv2 has been extended with traffic engineering options, called OSPF-TE [100].
Together with RSVP-TE, this forms the basis for an implementation of MPLS-
TE [101] and is also used in GMPLS. The OSPF TE extension is implemented
using a generic extension method of OSPFv2, the Opaque LSA [102]. There are
three types of Opaque LSAs, defined by their flooding scope:

• Link-state type 9 denotes a link-local scope. Type 9 Opaque LSAs are not
flooded beyond the local (sub)network.

• Link-state type 10 denotes an area-local scope. Type 10 Opaque LSAs are
not flooded beyond the borders of their associated area.

• Link-state type 11 denotes that the LSA is flooded throughout the Autonom-
ous System (AS). The flooding scope of type 11 LSAs are equivalent to
the flooding scope of AS-external (type 5) LSAs.

122 APPENDIX B. TRANSLATION OF OSPF-TE TO NDL

In this appendix we will only describe type 10 (area-local) LSAs. Together
with type 9, these are widely used in practice. Type 9 LSAs are only used for
direct communication between adjacent routers, they do not add topological
information. Currently, type 11 LSAs are not used.

We will first describe the format of type 10 LSAs, followed by what kind of
information values are transported through them. Finally we will describe how
to translate these values into NDL. The structure of the Opaque LSAs is shown
in figure B.1

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| LS age | Options | 10 or 11 |
+-+
| Opaque Type | Opaque ID |
+-+
| Advertising Router |
+-+
| LS Sequence Number |
+-+
| LS checksum | Length |
+-+
| |
+ +
| Opaque Information |
+ +
| ... |

Figure B.1: The structure of an Opaque LSA

The only difference with the regular OSPF header is that the Link ID field
has been replaced with Opaque Type and Opaque ID. The Opaque Type is an
8-bit integer value to describe the type of the Opaque LSA, values 0-127 must
be registered, and values 128-255 are available for experimental and private use.
The Opaque ID is a 24-bit integer type-specific ID value.

For almost all TE extensions type 10 LSAs are used, with Opaque Type 1, the
Opaque ID value is an arbitrary value used to maintain multiple TE LSAs. The
body of these LSAs (Opaque Information) are structured using type-length-

AREA-LOCAL OPAQUE LSAS 123

value elements (TLVs).
As the name suggests, a TLV consists of a Type and a Length field (both

16-bit integers), followed by a Value field of Length octets long. Note that the
value of a TLV can also be other TLVs, these are then called sub-TLVs

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type | Length |
+-+
| Value... |
. .
. .
. .
+-+

Figure B.2: The Type-Length-Value structure

Values often define a certain kind of bandwidth. These are all expressed in
bytes per second using the standard IEEE floating point notation:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|S| Exponent | Fraction |
+-+

S is the sign, Exponent is the exponent base 2 in ‘excess 127’ notation, and
Fraction is the mantissa - 1, with an implied binary point in front of it. Thus,
the above represents the value: (−1)S ∗ 2Exponent−127 ∗ (1 + Fraction)

B.2 Area-Local Opaque LSAs
In this section we describe the two currently defined TLVs for area-local opaque
LSAs (type 10), and their sub-TLVs as defined by RFC 3630[100], and 4203[103].

1. Router Address This contains a stable IP address for advertising router,
on which it can always be reached on the control plane.

124 APPENDIX B. TRANSLATION OF OSPF-TE TO NDL

2. Link This TLV describes a single link, and contains a set of sub-TLVs,
described in the list below.

Below we list the first 10 sub-TLVs (1–9 and 11, 10 is not assigned). The
sub-TLVs 14, 15, and 16 are described separately, because they are not that
straightforward (12 and 13 are also unassigned).

1. Link Type (1 octet) The value is either 1 (point-to-point) or 2 (multi-
access). This sub-TLV is mandatory.

2. Link ID (4 octets) An identifier for the other end of the link. For point-to-
point it is the router ID of the neighbor, for multi-access it is the interface
address of the designated router (i.e. the Link State ID of the Router
LSA). This sub-TLV is mandatory.

3. Local Interface IP Address (4N octets) The address(es) of the local
interface of this link, N is the number of addresses.

4. Remote Interface IP Address (4N octets) The address(es) of the remote
interface of this link. If it is multi-access, the value is either 0.0.0.0 or
the router may choose not to send this sub-TLV.

5. Traffic Engineering Metric (4 octets) The TE metric of the link, this
may be different from the standard OSPF metric.

6. Maximum Bandwidth (4 octets) The true capacity of the link.

7. Maximum Reservable Bandwidth (4 octets) The maximum reservable ca-
pacity in this direction. This may be greater than the true capacity.

8. Unreserved Bandwidth (32 octets) The amount of bandwidth available
for reservation in each of the eight priority levels, starting with 0. Each
value must be less than or equal to the maximum reservable bandwidth.

9. Administrative Group (4 octets) A bit mask assigned by the adminis-
trator. Each set bit corresponds to a group that the interface belongs to.
This starts at group 0, and is also called ‘Resource Class’ or ‘Color’.

11 Link Local/Remote Identifier (8 octets) GMPLS also supports unnumbered
links, but these have to be identified in some way. This TLV contains the
local and the remote identifiers for the endpoints of this unnumbered link.

AREA-LOCAL OPAQUE LSAS 125

An additional sub-TLV is the Link Protection Type sub-TLV (type 14). It
has a length of 4 octets, but only the first of the octets is currently used. The
meaning of the possible values of the first octet is as follows:

0x01 Extra Traffic, this link is protecting another link or links, and LSPs on
this link will be lost if any of these fail,

0x02 Unprotected, there is no protection for this link, and LSPs will be lost if
the link fails,

0x04 Shared, there are one or more links of type Extra Traffic protecting this
link, however, these are shared between one or more links of type Shared,

0x08 Dedicated 1:1, there is one dedicated link of type Extra Traffic protecting
this link,

0x10 Dedicated 1+1, there is one dedicated link protecting this link, which is
not advertised.

0x20 Enhanced, this link is protected by a scheme better than Dedicated 1+1,
for example by a 4 fiber ring BLSR.

Another sub-TLV that is relevant to link protection is the sub-TLV Shared
Risk Link Group (type 16). This sub-TLV has a length of 4N octets, where N
is the number of groups this link belongs to. A shared risk link group (SRLG)
is a group of links that share a resource whose failure may affect all links in
the group, for example two fibers running in the same conduit. An SRLG is
identified by a 32 bit number, that is unique within the domain.

The purpose of the SRLG identification is to allow requests for multiple
diversely routed LSPs, that also do not share any SRLGs, so as to minimize the
risk of failure.

B.2.1 Translation to NDL
In this section we describe how we translate the information in Opaque LSAs to
NDL. We use letters to denote objects. In NDL these objects are identified using
URIs, these names are built up using the URI of the document or namespace,
a pound sign (#), followed by the name of the object. Below we reference
to names using only the latter part of the URI. We reference NDL properties
using italics, the exact meaning of these properties can be found in the NDL
papers [1, 3], or the NDL Homepage [74].

From the header of any Opaque LSA we learn:

126 APPENDIX B. TRANSLATION OF OSPF-TE TO NDL

• There is a device R, named dev + Advertising Router

• Router R hasInterface I named Advertising Router.

Depending on the type of TLV in the Opaque LSA we can learn additional
information. For example from a type 1 TLV (Router Address) we can learn
only one simple fact:

• Router R hasInterface I named RouterAddress.

On the other hand, a type 2 TLV carries a lot more information:

• Device R hasInterface I,

• If the value of Link Type is 1 (point-to-point):

– There is a link L, named Link ID,
– There is an interface I ′ connectedTo L,
– Interface I is connectedTo L,
– If the sub-TLVs Local Interface IP Address and Remote Interface

IP Address are defined:
∗ Interface I has the address(es) Local Interface IP Address, if

the interface I was not named yet, then the first address is used
as name,

∗ Interface I ′ has the address(es) Remote Interface IP Address,
if the interface I ′ was not named yet, then the first address is
used as name,

– Otherwise, the link is unnumbered, and the sub-TLV Link Local/Remote
Identifiers must be present:

∗ I is named Link Local Identifier,
∗ I ′ is named Link Remote Identifier,

• If the value of Link Type is 2 (multi-access):

– There is a broadcast segment BC named bc + Link ID,
– Interface I is connectedTo link L,
– Link L is switchedTo broadcast segment BC,
– Interface I has the address Local Interface IP Address, if the in-

terface I was not named yet, then the first address is used as name,

SWITCHING CAPABILITY 127

• Link L has a metric of Traffic Engineering Metric,

• Link L has a capacity of Maximum Bandwidth,

• Link L has a protectionType of Link Protection Type,

• Link L has a sharedRiskGroup property with value Shared Risk Link
Groups.

Currently NDL does not yet support the concept of reservable and unre-
served bandwidth. The reason for this is that the reservation information is
more dynamic than the network topology. Our idea is that the best way to
provide the user with up to date information is to have a pointer to a certain
service, where the information about the reservable bandwidth of links can be
obtained. We currently also do not translate the administrative groups. We
currently have no experience what the value is used for in practice.

Note that it is possible to simplify this somewhat and use a single connec-
tedTo statement between the two interfaces. However, it is then not possible to
use the protectionType and sharedRiskGroup properties.

B.3 Switching Capability
The last sub-TLV that we describe is also the most complex; which is why
we dedicate a separate section to it: the Interface Switching Capability
Descriptor (ISCD)(type 15), which has a variable length. The purpose of this
TLV is to describe the switching capabilities of both interface in that link of the
advertising router, as well as the switching capabilities of the routers’ switching
matrix. The format of this sub-TLV is described in figure B.3.

The values of the Switching Capability and Encoding fields are the same
as used in the request signalling [65]. The Switching Capability (Switching
Cap) field contains one of the following values:

1 – Packet-Switch Capable-1 (PSC-1),

2 – Packet-Switch Capable-2 (PSC-2),

3 – Packet-Switch Capable-3 (PSC-3),

4 – Packet-Switch Capable-4 (PSC-4),

51 – Layer-2 Switch Capable (L2SC),

128 APPENDIX B. TRANSLATION OF OSPF-TE TO NDL

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Switching Cap | Encoding | Reserved |
+-+
| Max LSP Bandwidth at priority 0 |
+-+
| Max LSP Bandwidth at priority 1 |
+-+
| Max LSP Bandwidth at priority 2 |
+-+
| Max LSP Bandwidth at priority 3 |
+-+
| Max LSP Bandwidth at priority 4 |
+-+
| Max LSP Bandwidth at priority 5 |
+-+
| Max LSP Bandwidth at priority 6 |
+-+
| Max LSP Bandwidth at priority 7 |
+-+
| Switching Capability-specific information |
| (variable) |
+-+

Figure B.3: The structure of an Interface Switching Capability Descriptor

100 – Time-Division-Multiplex Capable (TDM),

150 – Lambda-Switch Capable (LSC),

200 – Fiber-Switch Capable (FSC).

The four PSC values are used to express hierarchy of LSPs tunneled within
LSPs.

The Encoding field is an integer field, where the value means that the link
has the following encoding type:

1 – Packet

SWITCHING CAPABILITY 129

2 – Ethernet

3 – ANSI/ETSI PDH

5 – SDH ITU-T G.707 / SONET ANSI T1.105

6 – Digital Wrapper

7 – Lambda (photonic)

8 – Fiber

9 – FiberChannel

For each of the eight priority levels, the sub-TLV gives the maximum band-
width this link can support for LSPs. Contrary to the Maximum Bandwidth
value, these values are designed to be dynamic. In the future these bandwidth
specifications will replace the Maximum Bandwidth sub-TLV described earlier.
For backward compatibility the Maximum Bandwidth value may be set to the
priority 7 bandwidth.

The last section of the sub-TLV contains information specific to the switching
capability value:

Packet-Switch Capable The specific information for PSC switching capabilit-
ies is structured as follows:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Minimum LSP Bandwidth |
+-+
| Interface MTU | Padding |
+-+

The Minimum LSP Bandwidth specifies the minimum bandwidth that an
LSP must request. The supported LSP bandwidths depend on the encod-
ing type. The Interface MTU specifies the largest size packets that are
supported by this interface.

Layer-2 Switch Capable does not carry any extra information.

130 APPENDIX B. TRANSLATION OF OSPF-TE TO NDL

Time-Division-Multiplex Capable The specific information for TDM switch-
ing capabilities uses the following structure:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Minimum LSP Bandwidth |
+-+
| Indication | Padding |
+-+

The Minimum LSP Bandwidth specifies the minimum bandwidth that an
LSP must request. The Indication contains an integer value used to
indicate whether the interface supports Standard SONET/SDH (0), or
Arbitrary SONET/SDH (1).

Lambda-Switch Capable does not carry any extra information.

The Interface Switching Capability Descriptor sub-TLVmay occur mul-
tiple times, for example to express that an interface supports different encodings.

B.3.1 Translation to NDL
The Interface Switching Capability Descriptor is very complex to trans-
late. The ISCD describes capabilities as part of the link, and the interface,
while NDL describes this as part of the device. The interpretation of the val-
ues in the ISCD also depend on the values of the related ISCD of the interface
on the other side of the link, which may have different values1. Therefore the
translation below uses both the local ISCD (describing interface I, of router R)
and the remote ISCD (interface I ′ and R′). The values of the remote ISCD are
referenced with an accent (e.g. Encoding’).

It is possible that the two ISCDs of a link carry different encoding values for
each side. This implicitly signals that one of the two interfaces is able to do an
adaptation from its encoding to the (lower) other encoding. A lower encoding
layer means a higher Encoding value.

NDL expresses adaptations using interface objects at different layers, there-
fore we introduce interfaces with a layer suffix, and define the relations between
them. Once the common layer between the two interfaces is identified, we define

1We assume that the link is bidirectional.

SWITCHING CAPABILITY 131

an equality with the interfaces at that layer and the original interfaces, so that
the connection is described on the right layer, with all adaptations.

Switching Cap Encoding NDL Layer
Packet-[1-4] Packet IP
Layer-2 Ethernet Ethernet

TDM ANSI PDH TDMSONET/SDH
– Digital Wrapper ?
Lambda Lambda Lambda
Fiber Fiber Fiber
– FiberChannel ?

Table B.1: The relation between the different layer definitions.

The relation between Encoding, Switching Capability and NDL Layers is
shown in Table B.12

The translation of these interfaces and layers is as follows:

• There is an interface IEncoding, named Local Interface + Encoding,

• Interface IEncoding is at NDL layer Encoding,

• There is an interface I ′Encoding′ , named Local Interface’ + Encoding’,

• Interface I ′Encoding′ is at NDL layer Encoding’,

Next we compare the Encoding values and introduce the relevant interfaces
at the right layers, and define the proper equalities:

• If Encoding > Encoding’, then:

– There is an interface IEncoding′ , which is at NDL layer Encoding’,

– There is an adaptation Adap(Encoding, Encoding′) between interface
IEncoding, and IEncoding′ ,

– Interface IEncoding′ and I are defined to be equal,

– Interface I ′Encoding′ and I
′ are defined to be equal,

2The table shows a merry mixture of layer names, technologies, and protocols

132 APPENDIX B. TRANSLATION OF OSPF-TE TO NDL

• If Encoding < Encoding’, then:

– There is an interface I ′Encoding, which is at NDL layer Encoding,

– There is an adaptation Adap(Encoding′, Encoding) between interface
I ′Encoding′ , and I

′
Encoding,

– Interface I ′Encoding and I ′ are defined to be equal,

– Interface IEncoding and I are defined to be equal,

• If Encoding = Encoding’, then:

– There is an interface IEncoding, which is at NDL layer Encoding,

– There is an interface I ′Encoding, which is at NDL layer Encoding,

– Interface I and IEncoding are defined to be equal,

– Interface I ′Encoding and I ′ are defined to be equal,

The actual switching is done by the device, these translations do not depend
on the other ISCD, so we define them for the general case:

• There is a switchMatrix SM , which is at NDL layer Switching Capability,

• Device R hasSwitchMatrix SM ,

• The switching-matrix SM hasInterface ISwitchingCapability,

• Depending on the difference between the layers of Encoding and Switching
Capability, introduce interfaces and adaptations as above, however, no
equalities need to be defined.

NDL currently does not have a way to express any of the information in the
switching capability-specific fields.

The exact adaptation functions used to go from one GMPLS layer to the
other in NDL are currently still an open issue. OSPF-TE simply does not
provide enough information to deduce the exact behavior of the devices.

133

AppendixC
List of Abbreviations

ANSI American National Standards Institute

ANSI/ETSI PDH Plesiochronous Digital Hierarchy (There are two interop-
erable versions of PDH, ratified by ANSI and ETSI)

ASN.1 Abstract Syntax Notation One

ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

CIM Common Information Model

CPU Central Processing Unit

DAS-3 Distributed ASCI Supercomputer 3

DMTF Distributed Management Task Force[38]

DRAGON Dynamic Resource Allocation over GMPLS Optical Networks

ETSI European Telecommunications Standard Institute

e-VLBI Very Long Baseline Interferometry

GLIF Global Lambda Integrated Facility[20]

134 APPENDIX C. LIST OF ABBREVIATIONS

GMPLS Generalized Multi-Protocol Label Switching

GOLE GLIF Open Lightpath Exchange

GPS Global Positioning System

IEEE Institute of Electrical and Electronics Engineers[104]

IETF Internet Engineering Task Force[105]

IP Internet Protocol

ITU-T Telecommunication Standardization Sector (coordinates standards on
behalf of the ITU)

ITU International Telecommunication Union

LHC Large Hadron Collider

LSA Link State Announcement (Messages that are exchanged in OSPF)

MST Minimum Spanning Tree

MTU Maximum Transmission Unit (The largest data unit size that a data
protocol (e.g. IP) can carry)

NDL Network Description Language

NEC network enabled capabilities

NM-WG Network Measurements Working Group

NREN national research and education network

OGF Open Grid Forum[106]

OSPF Open Shortest Path First

OSPF-TE Open Shortest Path First - Traffic Engineering (An extension of
OSPF)

PNNI Private Network-to-Network Interface

pynt Python NDL Toolkit

RDF Resource Description Framework

135

RFC Request For Comments (an IETF memorandum on Internet systems and
standards)

RST Random Spanning Tree

SDH Synchronous Digital Hiearachy

SNMP Simple Network Management Protocol

SONET Synchronous Optical Networking

SPARQL SPARQL Protocol and Query Language for RDF

SQL Structured Query Language

STP Spanning Tree protocol

STS Synchronous Transport Signal (Part of the SONET standard)

TCP Transmission Control Protocol

TDM Time-Division Multiplexing

TITAAN the Theatre Independent Tactical Army & Airforce Network

TL1 Transaction Language 1

UML User-Mode Linux

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

UTF-8 Unicode Transformation Format 8-bit

VLAN Virtual Local Area Network

VNE Virtual Network Experiments

WDM Wavelength-Division Multiplexing (A technology which multiplexes sev-
eral wavelengths over the same optical fiber)

XML Extensible Markup Language

136

137

List of Author’s Publications

[1] Jeroen van der Ham, Freek Dijkstra, Franco Travostino, Hubertus An-
dree, and Cees de Laat: Using RDF to Describe Networks. Fu-
ture Generation Computer Systems, Feature topic iGrid 2005 (October
2006). http://staff.science.uva.nl/~vdham/research/publications/
0510-NetworkDescriptionLanguage.pdf.

[2] Jeroen van der Ham, Paola Grosso, and Cees de Laat: Se-
mantics for Hybrid Networks Using the Network Description Lan-
guage (March 2006). Accepted as poster for SuperComputing 2006,
http://staff.science.uva.nl/~vdham/research/publications/
0603-NetworkDescriptionLanguage.pdf.

[3] Jeroen van der Ham, Paola Grosso, Ronald van der Pol, Andree Toonk,
and Cees de Laat: Using the Network Description Language in Optical
Networks. In Tenth IFIP/IEEE Symposium on Integrated Network Man-
agement (May 2007). http://staff.science.uva.nl/~vdham/research/
publications/0606-UsingNDLInOpticalNetworks.pdf.

[4] Freek Dijkstra, Bert Andree, Karst Koymans, Jeroen van der Ham, and
Cees de Laat: A Multi-Layer Network Model Based on ITU-T G.805. Com-
puter Networks (June 2007). http://staff.science.uva.nl/~fdijkstr/
publications/G805_Multilayer_Model.pdf.

[5] Jeroen van der Ham, Freek Dijkstra, Paola Grosso, Ronald van der Pol,
Andree Toonk, and Cees de Laat: A Distributed Topology Information Sys-
tem for Optical Networks Based on the Semantic Web. Optical Switching

http://staff.science.uva.nl/~vdham/research/publications/0510-NetworkDescriptionLanguage.pdf
http://staff.science.uva.nl/~vdham/research/publications/0510-NetworkDescriptionLanguage.pdf
http://staff.science.uva.nl/~vdham/research/publications/0603-NetworkDescriptionLanguage.pdf
http://staff.science.uva.nl/~vdham/research/publications/0603-NetworkDescriptionLanguage.pdf
http://staff.science.uva.nl/~vdham/research/publications/0606-UsingNDLInOpticalNetworks.pdf
http://staff.science.uva.nl/~vdham/research/publications/0606-UsingNDLInOpticalNetworks.pdf
http://staff.science.uva.nl/~fdijkstr/publications/G805_Multilayer_Model.pdf
http://staff.science.uva.nl/~fdijkstr/publications/G805_Multilayer_Model.pdf

138 LIST OF AUTHOR’S PUBLICATIONS

and Networking, 5(2-3):85–93 (June 2008). http://www.science.uva.nl/
~vdham/research/publications/0703-ApplicationsOfNDL.pdf.

[6] Jeroen van der Ham and Gert Jan Verhoog: Virtual environments for
networking experiments. Technical report, Master System- and Network
Engineering (2004). http://staff.science.uva.nl/~vdham/research/
publications/anp-jvdh-gjv.pdf.

[7] Paola Grosso, Jeroen van der Ham, Freek Dijkstra, and Cees de Laat: Se-
mantic Models for Optical Hybrid Networks – Lightpaths Across Domain
Boundaries. In Paul Cunningham and Miriam Cunningham (editors), Pro-
ceedings of eChallenges 2007 (October 2007). http://www.science.uva.
nl/~vdham/research/publications/0710-SemanticModels.pdf.

http://www.science.uva.nl/~vdham/research/publications/0703-ApplicationsOfNDL.pdf
http://www.science.uva.nl/~vdham/research/publications/0703-ApplicationsOfNDL.pdf
http://staff.science.uva.nl/~vdham/research/publications/anp-jvdh-gjv.pdf
http://staff.science.uva.nl/~vdham/research/publications/anp-jvdh-gjv.pdf
http://www.science.uva.nl/~vdham/research/publications/0710-SemanticModels.pdf
http://www.science.uva.nl/~vdham/research/publications/0710-SemanticModels.pdf

139

Bibliography

[8] Tiziana Ferrari, Jim Austin, Peter Clarke, Martyn Fletcher, Mark Gaynor,
Richard Hughes-Jones, Tom Jackson, Gigi Karmous-Edwards, Peter Kun-
szt, Mark J. Leese, Jason Leigh, Paul D. Mealor, Inder Monga, Volker
Sander, Ralph Spencer, Matt Strong, and Peter Tomsu: Grid Network
Services Use Cases from the e-Science Community. OGF Grid Final Doc-
uments 122, Open Grid Forum (December 2007). http://www.gridforum.
org/documents/GFD.122.pdf.

[9] Carola A. van Iersel, Harry J. de Koning, Gerrit Draisma, Willem P.
T. M. Mali, Ernst, Kristiaan Nackaerts, Mathias Prokop, Dik, Mathijs
Oudkerk, and Rob J. van Klaveren: Risk-based selection from the general
population in a screening trial: Selection criteria, recruitment and power
for the Dutch-Belgian randomised lung cancer multi-slice CT screening
trial (NELSON). International Journal of Cancer, 120(4):868–874 (2007).
doi:10.1002/ijc.22134.

[10] Electron Microscopy research at Leiden University Medical Cen-
ter. http://www.lumc.nl/rep/cod/redirect/1050/research/electron_
microscopy.htm.

[11] Worldwide LHC Computing Grid. http://lcg.web.cern.ch/LCG/.

[12] LHC Computing Grid Optical Private Network. http://lcg.web.cern.
ch/LCG/activities/networking/nw-grp.html.

[13] Freek Dijkstra: Modelling of Multi-Layer Transport Networks. Ph.D.
thesis, University of Amsterdam (2009).

http://www.gridforum.org/documents/GFD.122.pdf
http://www.gridforum.org/documents/GFD.122.pdf
http://dx.doi.org/10.1002/ijc.22134
http://www.lumc.nl/rep/cod/redirect/1050/research/electron_microscopy.htm
http://www.lumc.nl/rep/cod/redirect/1050/research/electron_microscopy.htm
http://lcg.web.cern.ch/LCG/
http://lcg.web.cern.ch/LCG/activities/networking/nw-grp.html
http://lcg.web.cern.ch/LCG/activities/networking/nw-grp.html

140 BIBLIOGRAPHY

[14] Arpad Szomoru, Andy Biggs, Mike Garrett, Huib Jan van Langevelde,
Friso Olnon, Zsolt Paragi, Steve Parsley, Sergei Pogrebenko, and Cormac
Reynolds: From truck to optical fibre: the coming-of-age of eVLBI. In
R. Bachiller, F. Colomer, J.F. Desmurs, and P de Vicente (editors), Pro-
ceedings of the 7th European VLBI Network Symposium, pages 257–260.
Joint Institute for VLBI in Europe (JIVE), Toledo, Spain (October 2004).
http://www.oan.es/evn2004/WebPage/ASzomoru.pdf.

[15] Valeriu Tudose, R.P. Fender, M.A. Garrett, J.C.A. Miller-Jones, Z. Par-
agi, R.E. Spencer, G.G. Pooley, M. van der Klis, and A. Szo-
moru: First e-VLBI observations of Cygnus X-3. Monthly Notices
of the Royal Astronomical Society: Letters, 375:L11–L15 (February
2007). doi:doi:10.1111/j.1745-3933.2006.00264.x. http://arxiv.org/
abs/astro-ph/0611054.

[16] A. Rushton, R.E. Spencer, M. Strong, R.M. Campbell, S. Casey, R.P.
Fender, M.A. Garrett, J.C.A. Miller-Jones, G.G. Pooley, C. Reynolds,
A. Szomoru, V. Tudose, and Z. Paragi: First e-VLBI observations of GRS
1915+105. Monthly Notices of the Royal Astronomical Society: Letters,
374:L47 (2007). doi:doi:10.1111/j.1745-3933.2006.00262.x. http://arxiv.
org/abs/astro-ph/0611049.

[17] StarPlane Project. http://www.starplane.org/.

[18] Distributed ASCI Supercomputer 3 DAS-3. http://www.cs.vu.nl/das3/.

[19] Franco Travostino, Paul Daspit, Leon Gommans, Chetan Jog, Cees
de Laat, Joe Mambretti, Inder Monga, Bas van Oudenaarde, Sat-
ish Raghunath, and Phil Yonghui Wang: Seamless live migra-
tion of virtual machines over the MAN/WAN. Future Genera-
tion Computer Systems, 22(8):901–907 (2006). ISSN 0167-739X.
doi:http://dx.doi.org/10.1016/j.future.2006.03.007.

[20] Global Lambda Integrated Facility (GLIF): http://www.glif.is/.

[21] Cees de Laat, Erik Radius, and Steven Wallace: The Rationale of
the Current Optical Networking Initiatives. Future Generation Com-
puter Systems, 19(6):999–1008 (August 2003). doi:10.1016/S0167-
739X(03)00077-3. http://www.sciencedirect.com/science/article/
B6V06-48V83MF-5/2/d8aac1d72ec497da8c83c4a07fdfec0c.

http://www.oan.es/evn2004/WebPage/ASzomoru.pdf
http://dx.doi.org/doi:10.1111/j.1745-3933.2006.00264.x
http://arxiv.org/abs/astro-ph/0611054
http://arxiv.org/abs/astro-ph/0611054
http://dx.doi.org/doi:10.1111/j.1745-3933.2006.00262.x
http://arxiv.org/abs/astro-ph/0611049
http://arxiv.org/abs/astro-ph/0611049
http://www.starplane.org/
http://www.cs.vu.nl/das3/
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2006.03.007
http://www.glif.is/
http://dx.doi.org/10.1016/S0167-739X(03)00077-3
http://dx.doi.org/10.1016/S0167-739X(03)00077-3
http://www.sciencedirect.com/science/article/B6V06-48V83MF-5/2/d8aac1d72ec497da8c83c4a07fdfec0c
http://www.sciencedirect.com/science/article/B6V06-48V83MF-5/2/d8aac1d72ec497da8c83c4a07fdfec0c

BIBLIOGRAPHY 141

[22] Robert Patterson and Maxine D. Brown: GLIF world map (August
2005). Visualization by Robert Patterson, the National Center for Su-
percomputing Applications, University of Illinois at Urbana-Champaign.
Data compilation by Maxine Brown, University of Illinois at Chicago.
Earth texture provided by NASA, http://visibleearth.nasa.gov., http:
//www.glif.is/publications/#info.

[23] Cees de Laat and Johan Blom: User-Level Performance Monitoring
Programme. In TERENA Network Conference 2000. Lisbon, Por-
tugal (May 2000). http://www.terena.org/events/archive/tnc2000/
proceedings/8B/8b4.ppt.

[24] TNO. http://www.tno.nl/.

[25] Hans Keus: Netforce Principles: An Elementary Foundation of NEC and
NCO. In 10th CCRT Symposium (June 2005). http://handle.dtic.mil/
100.2/ADA463913.

[26] Ltc T. Sierksma, Maj J. Hoekstra, Berry Jansen, Bert Boltjes, and Jaap
van den Oever: Geographical based Situational Awareness in Military Mo-
bile Domain. In Military Communications Conference (MILCOM), pages
1–7 (2007). doi:10.1109/MILCOM.2007.4455345.

[27] HP Openview. http://openview.hp.com/.

[28] Dynamic Resource Allocation Controller (DRAC). http://www.nortel.
com/drac/.

[29] Iljitsch van Beijnum: BGP. O’Reilly Media, Inc. (2002). ISBN
9780596002541.

[30] Jerry Sobieski and Tom Lehman: Common Service Definition. Tech-
nical report, Mid-Atlantic Crossroads (MAX) (2005). http://dragon.
maxgigapop.net/twiki/bin/view/DRAGON/CommonServiceDefinition.

[31] Rene Hatem, Almar Giesberts, and Erik-Jan Bos: The ordering
and fault resolution process for multi-domain lightpaths across hy-
brid networks. Technical report, Global Lambda Integrated Facil-
ity (GLIF) (July 2006). http://www.glif.is/working-groups/tech/
fault-resolution-0.9.pdf.

http://www.glif.is/publications/#info
http://www.glif.is/publications/#info
http://www.terena.org/events/archive/tnc2000/proceedings/8B/8b4.ppt
http://www.terena.org/events/archive/tnc2000/proceedings/8B/8b4.ppt
http://www.tno.nl/
http://handle.dtic.mil/100.2/ADA463913
http://handle.dtic.mil/100.2/ADA463913
http://dx.doi.org/10.1109/MILCOM.2007.4455345
http://openview.hp.com/
http://www.nortel.com/drac/
http://www.nortel.com/drac/
http://dragon.maxgigapop.net/twiki/bin/view/DRAGON/CommonServiceDefinition
http://dragon.maxgigapop.net/twiki/bin/view/DRAGON/CommonServiceDefinition
http://www.glif.is/working-groups/tech/fault-resolution-0.9.pdf
http://www.glif.is/working-groups/tech/fault-resolution-0.9.pdf

142 BIBLIOGRAPHY

[32] Lars Fischer, Tom Lehman, Ronald van der Pol, and Thomas Tam: GLIF
Lightpath Identifier Proposal. Technical report, Global Lambda Integrated
Facility (GLIF) (August 2008). http://www.glif.is/list-archives/
all/pdfhxTQwd49Ef.pdf.

[33] Niels Roosen: Fault Detection and Isolation on Transport Networks. Mas-
ter’s thesis, University of Amsterdam (September 2008). http://www.
science.uva.nl/research/sne/files/ntroosen-lmon.pdf.

[34] A. Pras and J. Schoenwaelder: On the Difference between Information
Models and Data Models. RFC 3444 (Informational) (January 2003).
http://www.ietf.org/rfc/rfc3444.txt.

[35] J. Case, R. Mundy, D. Partain, and B. Stewart: Introduction and
Applicability Statements for Internet-Standard Management Framework.
RFC 3410 (Informational) (December 2002). http://www.ietf.org/rfc/
rfc3410.txt.

[36] IETF: Netconf working group. http://www.ops.ietf.org/netconf/.

[37] DMTF: Common Information Model (CIM). http://www.dmtf.org/
standards/cim/.

[38] Distributed Management Task Force (DMTF). http://www.dmtf.org/.

[39] Adrian Farrel and Igor Bryskin: GMPLS: Architecture and Applications.
Morgan Kaufmann, first edition (2006). ISBN 978-0-12-088422-3.

[40] J. Zurawski, M. Swany, and D. Gunter: A Scalable Framework for Rep-
resentation and Exchange of Network Measurments. In 2nd International
IEEE/Create-Net Conference on Testbeds and Research Infrastructures
for the Development of Networks and Communities (Tridentcom 2006)
(March 2006). http://acs.lbl.gov/~dang/tmp/trident.pdf.

[41] Network Measurements Working Group (NM-WG). http://forge.
gridforum.org/sf/projects/nm-wg.

[42] J. W. Boote, E. L. Boyd, J. Durand, A. Hanemann, L. Kudarimoti,
R. Łapacz, N. Simar, and S. Trocha: Towards multi-domain monit-
oring for the European research networks. Computational Methods in
Science and Technology, 11(2):91–100 (2005). ISSN 1505-0602. http:
//www.man.poznan.pl/cmst/2005/v_11_2/02-Boote.pdf.

http://www.glif.is/list-archives/all/pdfhxTQwd49Ef.pdf
http://www.glif.is/list-archives/all/pdfhxTQwd49Ef.pdf
http://www.science.uva.nl/research/sne/files/ntroosen-lmon.pdf
http://www.science.uva.nl/research/sne/files/ntroosen-lmon.pdf
http://www.ietf.org/rfc/rfc3444.txt
http://www.ietf.org/rfc/rfc3410.txt
http://www.ietf.org/rfc/rfc3410.txt
http://www.ops.ietf.org/netconf/
http://www.dmtf.org/standards/cim/
http://www.dmtf.org/standards/cim/
http://www.dmtf.org/
http://acs.lbl.gov/~dang/tmp/trident.pdf
http://forge.gridforum.org/sf/projects/nm-wg
http://forge.gridforum.org/sf/projects/nm-wg
http://www.man.poznan.pl/cmst/2005/v_11_2/02-Boote.pdf
http://www.man.poznan.pl/cmst/2005/v_11_2/02-Boote.pdf

BIBLIOGRAPHY 143

[43] Marcin Wolski, Stanislaw Osinski, Paweł Gruszczynski, Maciej Labedzki,
Anand Patil, and Ian Thomson: common Network Information Ser-
vice Schema Specification. Deliverable GN2-07-045v4, GÉANT (April
2007). http://www.geant2.net/upload/pdf/GN2-07-045v4-DS3-13-1_

common_Network_Information_Service_Schema_Specification.pdf.

[44] GÉANT2. http://www.geant2.net/.

[45] Mauro Campanella, Radek Krzywania, Afrodite Sevasti, and Stella-
Maria Thomas: Generic Domain-centric Bandwidth on Demand
Service Manager. Deliverable GN2-08-129, GÉANT (August
2008). http://www.geant2.net/upload/pdf/GN2-08-129-DS3-3-4_

Functional_Specification_and_Design_of_Generic_Domain-centric_

BoD_Service_Manager.pdf.

[46] Network Markup Language Working Group (NML-WG). http://forge.
gridforum.org/sf/projects/nml-wg.

[47] Deepankar Medhi and Karthikeyan Ramasamy: Network Routing. Elsevier
(2007). ISBN 978-0-12-088588-6.

[48] Marc Blanchet, Florent Parent, and Bill St-Arnaud: Optical BGP
(OBGP): InterAS lightpath provisioning (March 2001). http://www.
viagenie.ca/ietf/draft/draft-parent-obgp-01.txt.

[49] Elliotte Rusty Harold and W. Scott Means: XML in a Nutshell. O’Reilly
Media, Inc., third edition (2004). ISBN 978-0596007645.

[50] Erik Ray: Learning XML. O’Reilly Media, Inc., second edition (2003).
ISBN 978-0596004200.

[51] The Semantic Web. http://www.w3.org/2001/sw/.

[52] Resource Description Framework (RDF). http://www.w3.org/RDF/.

[53] Eric Prud’hommeaux and Andy Seaborne: SPARQL Query Language for
RDF (2005). http://www.w3.org/TR/rdf-sparql-query/.

[54] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard) (June 1999). Updated by RFC 2817, http://www.ietf.
org/rfc/rfc2616.txt.

http://www.geant2.net/upload/pdf/GN2-07-045v4-DS3-13-1_common_Network_Information_Service_Schema_Specification.pdf
http://www.geant2.net/upload/pdf/GN2-07-045v4-DS3-13-1_common_Network_Information_Service_Schema_Specification.pdf
http://www.geant2.net/
http://www.geant2.net/upload/pdf/GN2-08-129-DS3-3-4_Functional_Specification_and_Design_of_Generic_Domain-centric_BoD_Service_Manager.pdf
http://www.geant2.net/upload/pdf/GN2-08-129-DS3-3-4_Functional_Specification_and_Design_of_Generic_Domain-centric_BoD_Service_Manager.pdf
http://www.geant2.net/upload/pdf/GN2-08-129-DS3-3-4_Functional_Specification_and_Design_of_Generic_Domain-centric_BoD_Service_Manager.pdf
http://forge.gridforum.org/sf/projects/nml-wg
http://forge.gridforum.org/sf/projects/nml-wg
http://www.viagenie.ca/ietf/draft/draft-parent-obgp-01.txt
http://www.viagenie.ca/ietf/draft/draft-parent-obgp-01.txt
http://www.w3.org/2001/sw/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

144 BIBLIOGRAPHY

[55] T. Berners-Lee, R. Fielding, and L. Masinter: Uniform Resource Identifier
(URI): Generic Syntax. RFC 3986 (Standard) (January 2005). http:
//www.ietf.org/rfc/rfc3986.txt.

[56] Dublin Core Metadata Initiative. http://www.dublincore.org/.

[57] Dave Beckett and Brian McBride: RDF/XML Syntax Specification (Feb-
ruary 2004). http://www.w3.org/TR/rdf-syntax-grammar/.

[58] Friend of a Friend (FOAF) Project. http://www.foaf-project.org/.

[59] Dublin Core Metadata Initiative. http://www.dublincore.org/.

[60] Steve DeRose, Eve Maler, and David Orchard: XML Linking Language
(XLink) Version 1.0. Technical report, World Wide Web Consortium
(W3C) (June 2001). http://www.w3.org/TR/xlink/.

[61] Franco Travostino: Using the Semantic Web to Automate the Operation
of a Hybrid Internetwork. In GridNets conference proceedings (October
2005).

[62] J.F. Shoch: Inter-networking Naming, Addressing and Routing. In IEEE
COMPCON, pages 72–79 (1978).

[63] Jerome H. Saltzer: On The Naming and Binding of Network Destinations.
Local Computer Networks, pages 311–317 (1982). Later re-published as
RFC 1498.

[64] J. Noel Chiappa: Endpoints and Endpoint Names: A Proposed En-
hancement to the Internet Architecture. Internet-draft (expired) (1999).
http://ana.lcs.mit.edu/~jnc/tech/endpoints.txt.

[65] L. Berger: Generalized Multi-Protocol Label Switching (GMPLS) Signaling
Functional Description. RFC 3471 (Proposed Standard) (January 2003).
Updated by RFCs 4201, 4328, 4872, http://www.ietf.org/rfc/rfc3471.
txt.

[66] David Goldberg: What Every Computer Scientist Should Know About
Floating-Point Arithmetic. ACM Computing Surveys, 23(1):5–48 (March
1991).

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.dublincore.org/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.foaf-project.org/
http://www.dublincore.org/
http://www.w3.org/TR/xlink/
http://ana.lcs.mit.edu/~jnc/tech/endpoints.txt
http://www.ietf.org/rfc/rfc3471.txt
http://www.ietf.org/rfc/rfc3471.txt

BIBLIOGRAPHY 145

[67] K. Shiomoto, D. Papadimitriou, JL. Le Roux, M. Vigoureux, and
D. Brungard: Requirements for GMPLS-Based Multi-Region and Multi-
Layer Networks (MRN/MLN). RFC 5212 (Informational) (July 2008).
http://www.ietf.org/rfc/rfc5212.txt.

[68] Generic functional architecture of transport networks. Recommenda-
tion ITU-T G.805, International Telecommunication Union (ITU) (March
2000). http://www.itu.int/rec/T-REC-G.805/.

[69] Freek Dijkstra: NDL Techonology Schemata. http://www.science.uva.
nl/research/sne/ndl/?c=20-Technology-Schemas.

[70] Fernando Kuipers and Freek Dijkstra: Path Selection in Multi-Layer
Networks. Computer Communications, 32(1):78 – 85 (2008).
doi:10.1016/j.comcom.2008.09.026. http://staff.science.uva.nl/
~fdijkstr/publications/multilayer-pathselection.pdf.

[71] Graphviz – Graph Visualization Software. http://www.graphviz.org/.

[72] NetherLight. http://www.netherlight.net.

[73] Google Maps API Homepage. http://code.google.com/apis/maps/.

[74] Jeroen van der Ham and Freek Dijkstra: Network Description Language
Homepage. http://www.science.uva.nl/research/sne/ndl/.

[75] Dynamic Resource Allocation via GMPLS Optical Networks. http://
dragon.maxgigapop.net.

[76] Ronald van der Pol and Andree Toonk: Lightpath Planning and Monitor-
ing in SURFnet6 and NetherLight. In TERENA Network Conference 2007.
Lynby, Denmark (May 2007). https://noc.sara.nl/nrg/publications/
LightpathPlanningAndMonitoring.pdf.

[77] Ronald van der Pol and Andree Toonk: Lightpath Planning and Mon-
itoring. In eChallenges Conference 2007. The Hague, The Neth-
erlandsH (October 2007). https://noc.sara.nl/nrg/publications/
E-Challenges-v1.4.pdf.

[78] Ronald van der Pol: Spotlight – NetherLight lightpath status. http://noc.
netherlight.net:8080/spotlight/.

http://www.ietf.org/rfc/rfc5212.txt
http://www.itu.int/rec/T-REC-G.805/
http://www.science.uva.nl/research/sne/ndl/?c=20-Technology-Schemas
http://www.science.uva.nl/research/sne/ndl/?c=20-Technology-Schemas
http://dx.doi.org/10.1016/j.comcom.2008.09.026
http://staff.science.uva.nl/~fdijkstr/publications/multilayer-pathselection.pdf
http://staff.science.uva.nl/~fdijkstr/publications/multilayer-pathselection.pdf
http://www.graphviz.org/
http://www.netherlight.net
http://code.google.com/apis/maps/
http://www.science.uva.nl/research/sne/ndl/
http://dragon.maxgigapop.net
http://dragon.maxgigapop.net
https://noc.sara.nl/nrg/publications/LightpathPlanningAndMonitoring.pdf
https://noc.sara.nl/nrg/publications/LightpathPlanningAndMonitoring.pdf
https://noc.sara.nl/nrg/publications/E-Challenges-v1.4.pdf
https://noc.sara.nl/nrg/publications/E-Challenges-v1.4.pdf
http://noc.netherlight.net:8080/spotlight/
http://noc.netherlight.net:8080/spotlight/

146 BIBLIOGRAPHY

[79] Python NDL Toolkit (pynt). http://ndl.uva.netherlight.nl/trac/
ndl/.

[80] Virtual Network Experiments toolkit(VNE). http://ndl.uva.
netherlight.nl/trac/vne/.

[81] Jeff Dike: User Mode Linux. Prentice Hall PTR, Upper Saddle River, NJ,
USA (2006). ISBN 0131865056.

[82] Virtual Distributed Ethernet (VDE). http://vde.sourceforge.net/.

[83] Private Network-Network Interface Specification. Technical re-
port, ATM Forum (1996). http://www.ipmplsforum.org/ftp/pub/
approved-specs/af-pnni-0055.001.pdf.

[84] Whay C. Lee: Topology aggregation for hierarchical routing in ATM
networks. SIGCOMM Computer Communications Review, 25(2):82–92
(1995). ISSN 0146-4833. doi:10.1145/210613.210625.

[85] Liang Guo and Ibrahim Matta: On State Aggregation for Scalable QoS
Routing. In Proceedings of the ATM Workshop, volume 6, pages 306–
314 (1998). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.33.8296.

[86] B. Awerbuch, Y. Du, B. Khan, and Y. Shavitt: Routing through net-
works with hierarchical topology aggregation. In Third IEEE Symposium
on Computers and Communications (ISCC), pages 406–412 (1998).
doi:10.1109/ISCC.1998.702556.

[87] Q. Liu, M. A. Kök, N. Ghani, and A. Gumaste: Hierarchical routing in
multi-domain optical networks. Computer Communications, 30(1):122–
131 (December 2006).

[88] Zheng Wang and Jon Crowcroft: Quality-of-service routing for supporting
multimedia applications. Selected Areas in Communications, 14(7):1228–
1234 (1996). doi:10.1109/49.536364.

[89] B. M. Waxman: Routing of multipoint connections. Selected Areas in
Communications, 6(9):1617–1622 (1988). doi:10.1109/49.12889.

[90] B. Awerbuch, Y. Azar, and S. Plotkin: Throughput-competitive on-line
routing. In SFCS ’93: Proceedings of the Proceedings of 1993 IEEE

http://ndl.uva.netherlight.nl/trac/ndl/
http://ndl.uva.netherlight.nl/trac/ndl/
http://ndl.uva.netherlight.nl/trac/vne/
http://ndl.uva.netherlight.nl/trac/vne/
http://vde.sourceforge.net/
http://www.ipmplsforum.org/ftp/pub/approved-specs/af-pnni-0055.001.pdf
http://www.ipmplsforum.org/ftp/pub/approved-specs/af-pnni-0055.001.pdf
http://dx.doi.org/10.1145/210613.210625
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.8296
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.8296
http://dx.doi.org/10.1109/ISCC.1998.702556
http://dx.doi.org/10.1109/49.536364
http://dx.doi.org/10.1109/49.12889

BIBLIOGRAPHY 147

34th Annual Foundations of Computer Science, pages 32–40. IEEE Com-
puter Society, Washington, DC, USA (1993). ISBN 0-8186-4370-6.
doi:10.1109/SFCS.1993.366884.

[91] Qingming Ma and P. Steenkiste: On path selection for traffic with band-
width guarantees. IEEE International Conference on Network Protocols,
0:191+ (1997). ISSN 1092-1648. doi:10.1109/ICNP.1997.643714.

[92] Hui Zang, Jason P Jue, and Biswanath Mukherjee: A review of rout-
ing and wavelength assignment approaches for wavelength-routed optical
WDM networks. Optical Network Magazine, 1(1):47–60 (January 2000).

[93] OPNET the network simulator tool. http://www.opnet.com/.

[94] N. Ghani, Qing Liu, D. Benhaddou, N. S. V. Rao, and T. Lehman:
Multidomain optical networks: issues and challenges - Control plane
design in multidomain/multilayer optical networks. IEEE Communica-
tions Magazine, 46(6):78–87 (2008). doi:10.1109/MCOM.2008.4539470.

[95] A. L. Barabási and R. Albert: Emergence of scaling in random networks.
Science, 286(5439):509 – 512 (1999).

[96] Carol Meertens and Joost Pijnaker: Are Optical Networks Scale-Free?
Technical report, Systems and Network Engineering Master, University
of Amsterdam (July 2007). http://staff.science.uva.nl/~delaat/
sne-2006-2007/p31/report.pdf.

[97] Aric Hagberg, Dan Schult, and Pieter Swart: NetworkX Python Package
(version 0.36). https://networkx.lanl.gov/wiki.

[98] R Development Core Team: R: A Language and Environment for Statist-
ical Computing. R Foundation for Statistical Computing, Vienna, Austria
(2008). ISBN 3-900051-07-0, http://www.R-project.org.

[99] Internet2. http://www.internet2.edu/.

[100] D. Katz, K. Kompella, and D. Yeung: Traffic Engineering (TE) Exten-
sions to OSPF Version 2. RFC 3630 (Proposed Standard) (September
2003). Updated by RFC 4203, http://www.ietf.org/rfc/rfc3630.txt.

[101] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus: Re-
quirements for Traffic Engineering Over MPLS. RFC 2702 (Informational)
(September 1999). http://www.ietf.org/rfc/rfc2702.txt.

http://dx.doi.org/10.1109/SFCS.1993.366884
http://dx.doi.org/10.1109/ICNP.1997.643714
http://www.opnet.com/
http://dx.doi.org/10.1109/MCOM.2008.4539470
http://staff.science.uva.nl/~delaat/sne-2006-2007/p31/report.pdf
http://staff.science.uva.nl/~delaat/sne-2006-2007/p31/report.pdf
https://networkx.lanl.gov/wiki
http://www.R-project.org
http://www.internet2.edu/
http://www.ietf.org/rfc/rfc3630.txt
http://www.ietf.org/rfc/rfc2702.txt

148 BIBLIOGRAPHY

[102] R. Coltun: The OSPF Opaque LSA Option. RFC 2370 (Proposed Stand-
ard) (July 1998). Obsoleted by RFC 5250, updated by RFC 3630,
http://www.ietf.org/rfc/rfc2370.txt.

[103] K. Kompella and Y. Rekhter: OSPF Extensions in Support of Generalized
Multi-Protocol Label Switching (GMPLS). RFC 4203 (Proposed Standard)
(October 2005). http://www.ietf.org/rfc/rfc4203.txt.

[104] Institute of Electrical and Electronics Engineers (IEEE). http://www.
ieee.org/.

[105] Internet Engineering Task Force (IETF). http://www.ietf.org/.

[106] Open Grid Forum (OGF). http://www.ogf.org/.

http://www.ietf.org/rfc/rfc2370.txt
http://www.ietf.org/rfc/rfc4203.txt
http://www.ieee.org/
http://www.ieee.org/
http://www.ietf.org/
http://www.ogf.org/

149

Summary

Communication over computer networks is an important part of our society
today: we make phone calls, send emails, and surf the web. All these processes
are enabled by the physical infrastructure of wires and fibers in the ground,
combined with networking devices that communicate electronically.

Scientific research has also adapted to make use of the increased network con-
nectivity. Researchers are sharing data sets, computing infrastructure and spe-
cialized equipment, all through the network. However, more and more scientific
applications need better quality of services than the regular packet-switched In-
ternet can offer. Such applications may produce so much traffic that if they use
the regular Internet, they fail to run smoothly or disrupt other Internet traffic.
These applications require dedicated network connections.

In the last few years a number of national research and education networks
have moved to hybrid network infrastructures based on optical networking. The
term ‘hybrid network’ means that the network carries the regular Internet traffic,
and a different part is used to provision lightpaths, dedicated connections, to
support researchers.

Lightpaths can span multiple administrative domains. A typical network
connection between two universities first crosses a campus network, then a na-
tional research network, then goes through an international peering to another
research network, then another campus network and finally to an internal net-
work within a building. Different persons and organisations administrate all
these networks.

Ideally, the scientific applications that need to move large amounts of data,
or require a smooth network service simply ask for a lightpath and it is provided
automatically. Currently, the configuration of a lightpath is performed manu-
ally and can take up to several weeks. The path through the topology must
be specified and details communicated to all the network providers before the

150 SUMMARY

lightpath can be configured.
The first part of this thesis describes the Network Description Language, a

model for describing complex network topologies and technologies. The model
defines a clear terminology for describing network topologies which can be linked
to other descriptions and other resources. In the same way topology descriptions
can be linked to descriptions of other networks, creating a distributed view of
the global topology. These linked topologies can then be used to facilitate the
configuration of lightpaths and optical networks.

Ideally all the network providers maintain the topology information so that
there is a complete overview of possible connectivity and network details. How-
ever, network operators tend to be protective of detailed topology information,
because of scalability, security, or policy reasons. Fortunately, it is also possible
to share an aggregated view of the topology. This means that only some details
of the network are published.

There are different levels of abstraction that can be used for topologies:
from collapsing a whole network domain to a single point, to providing detailed
information about the edge nodes and their internal connectivity. In part two of
this thesis I describe an emulation to find out what kind of effect this aggregation
has on the accuracy of inter-domain pathfinding.

From the results we can see that publishing detailed information about edge
nodes and their internal connectivity shows almost no difference with pathfind-
ing on unaggregated topologies. Collapsing a domain to a single node is clearly
the worst performing solution. From the results we can conclude that with
higher levels of abstractions, the accuracy of inter-domain pathfinding degrades
significantly.

151

Samenvatting

Communicatie via computer netwerken is een belangrijk deel van ons leven
geworden: we bellen, sturen emails en surfen op het web. Al deze processen
worden mogelijk gemaakt door de fysieke infrastructuur van kabels en glasvezel
in de grond, samen met de netwerkapparatuur die hierover communiceren.

Wetenschappelijk onderzoek maakt ook gebruik van deze toegenomen con-
nectiviteit. Onderzoekers delen grote databestanden, computerfaciliteiten en ge-
specialiseerde apparatuur, allemaal via netwerken. Een belangrijke ontwikkeling
is dat steeds meer wetenschappelijke toepassingen een betere servicekwaliteit no-
dig hebben dan het normale, pakketgeschakelde internet kan bieden. Sommige
van zulke toepassingen genereren erg veel verkeer. Zoveel zelfs dat als dat verkeer
over het Internet zou gaan, het niet vloeiend zou lopen, of het andere verkeer op
het Internet kan verstoren. Dit soort toepassingen hebben aparte verbindingen
nodig, buiten het Internet om.

In de afgelopen paar jaar zijn een aantal nationale onderzoeksnetwerken
overgestapt op een hybride netwerk infrastructuur gebaseerd op optische net-
werken. De term ‘hybride netwerk’ betekent dat het netwerk enerzijds gebruikt
wordt voor het reguliere internetverkeer en dat een ander gedeelte van datzelfde
netwerk gebruikt wordt voor ‘lichtpaden’, speciaal opgezette verbindingen voor
wetenschappelijke toepassingen.

Lichtpaden kunnen door meerdere netwerken gaan. Een typische netwerk-
verbinding van een universiteit naar een andere gaat eerst door een campus
netwerk heen, dan door het nationale onderzoeksnetwerk. Vervolgens gaat de
verbinding via een internationale koppeling naar een ander onderzoeksnetwerk,
weer een campus en uiteindelijk door het netwerk binnen een gebouw. Al deze
verschillende netwerken worden beheerd door andere personen en instellingen.

Idealiter vraagt een wetenschapper die grote hoeveelheden data wil verstu-
ren om een lichtpad en wordt dat automatisch gegeven. Op dit moment worden

152 SAMENVATTING

zulke lichtpaden vooral nog met de hand ingesteld en dat kan enkele weken du-
ren. Het pad door het netwerk moet worden vastgesteld en daarna moeten de
details worden gecommuniceerd naar alle netwerk-providers, voordat het licht-
pad ingesteld kan worden.

Het eerste deel van dit proefschrift beschrijft de Network Description Lan-
guage, een model voor het beschrijven van complexe netwerken en technolo-
gieën. Dit model definieert een duidelijke terminologie om netwerktopologieën
te beschrijven die kunnen worden gekoppeld aan andere beschrijvingen van bij-
voorbeeld apparatuur. Op een zelfde manier kan een netwerkbeschrijving ook
gekoppeld worden aan de beschrijvingen van andere netwerken, zodat je een
gedistribueerde omschrijving krijgt van het globale netwerk. Deze gekoppelde
beschrijvingen kunnen dan gebruikt worden om het instellen van lichtpaden en
optische netwerken makkelijker te maken.

In het ideale geval zijn netwerkbeschrijvingen van alle verschillende netwerk-
providers openbaar, zodat een compleet overzicht van de mogelijkheden en net-
werkdetails beschikbaar is. Helaas geven netwerkbeheerders de details van hun
volledige netwerk niet graag vrij vanwege schaalbaarheid, veiligheid of policy-
redenen. Het is echter ook mogelijk om een geabstraheerde beschrijving van een
netwerk te maken. Dit betekent dat alleen bepaalde details van het netwerk
gepubliceerd worden.

Er zijn meerdere manieren om een abstractie te maken van een netwerk-
model: van volledig geabstraheerd, waarbij het hele netwerk kan worden plat-
geslagen tot één punt, tot bijna geen abstractie, met een beschrijving van de
randpunten met een omschrijving van de interne verbindingen. In het tweede
deel van dit proefschrift beschrijf ik een emulatie-experiment om er achter te ko-
men wat voor een effect abstractie heeft op het vinden van paden door meerdere
domeinen.

Uit de resultaten blijkt dat gedetailleerde informatie over de randpunten en
hun connectiviteit bijna geen verschil geeft met de resultaten gebaseerd op vol-
ledige informatie. In de resultaten is ook te zien dat een heel netwerk afbeelden
op één punt duidelijk de slechtste oplossing is. Met hogere abstractieniveaus
neemt dus ook de nauwkeurigheid van het vinden van paden af.

153

Acknowledgements

The days of solitary research are long gone, and this research could not have
been possible without the help and support of a great number of people.

First of all, I will be forever indebted to my first supervisor, Cees de Laat,
for making this project possible, for the excellent support along the way, and for
sharing his inspiring vision. I would also like to thank Paola Grosso for her su-
pervision, support, and endless patience in discussions and proof-reading. Many
thanks to my promotor, Peter Sloot, for his comments, discussions, and pushing
me to make scientific experiments. I am also very grateful to the committee,
Pieter Adriaans, Henri Bal, Hans Keus, Rob Meijer, Dimitra Simeonidou, for
inspecting my thesis.

A special thanks goes to Freek Dijkstra, for being a fun colleague, an ex-
cellent sparring partner, the support in making this thesis, and for having a
good listening ear. This work would also not have been possible without the
help of all my other colleagues of the AIR SNE group that I have had over the
years: Alexis, Arie, Bas, Bert, Carol, Damien, Erik, Fred, Guido, Hans, Jaap,
JP, Leon, Li, Matthijs, Mihai, Ralph, Rob, Rudolf, Sander, Steven, and Yuri.
And also my colleagues at SARA: Andree and Ronald.

Thank you to Hans Keus, Ronald Poell and Bert Boltjes of TNO, for their
good discussions, support and pointers to related work in the defence area.

Many thanks to the people at MAX and Internet2 that I worked with. Chris
Tracy, you are a great friend to have, and you have always been extremely
supportive. Jarda Flidr, I really enjoyed our road-trip, and our (cynical) dis-
cussions. A special thank you to John Vollbrecht, for our endless discussions,
which sometimes forced me to re-examine things. Also my thanks go out to
Tom Lehman and Jerry Sobiesky for their enlightening discussions.

A big thank you to everyone in the GLIF community for making it a great
community which is open to new ideas, provides feedback, valuable data and

154 ACKNOWLEDGEMENTS

experiences upon which we can all build our research.
I would also like to thank Karst Koymans, Jeroen Scheerder and Vincent van

Oostrom for their inspirational courses and encouraging me to pursue a career
in research.

Thanks also goes out to Judith, you have supported me for a long time.
I am grateful to Jochem, Rudy, Sander, Sander, Staf and Tom of the Second

Wednesday Friday club for the long evenings filled with great fun and games
over the years.

Alex, thank you for your support, and for being there when I needed you.
This is another step in our tropical island retirement plan!

I owe a great deal to my parents, Johan and Digna, my brothers, Joost and
Sjoerd, and my grandparents. Thank you for supporting me all these years.

Finally, I am extremely grateful to and for Ela. You are showing me that
there is a lot of beauty in the world, even in just small and simple things.

Last Minute Addendum: A big thank you to the printer for acknowledging
that my research is still too complex for computers to understand.

Figure C.1: ‘The calculation or data are too complex.’

	Contents
	Introduction
	I The Network Description Language
	Describing Computer Networks
	The Network Description Language
	NDL Applications

	II Topology Aggregation in Multi-Domain Networks
	Introduction to Network Topology Aggregation
	Emulations of Aggregated Network Topologies

	Summary and Conclusion
	Translation of OSPF to NDL
	Translation of OSPF-TE to NDL
	List of Abbreviations
	List of Author's Publications
	Bibliography
	Summary
	Samenvatting
	Acknowledgements

