
The NOVI Information Models

Jeroen van der Hama,∗, József Stégerb, Sándor Lakic, Yiannos Kryftisd, Vasilis
Maglarisd, Cees de Laata

aSystem and Network Engineering research group, Informatics Institute,
University of Amsterdam

bDepartment of Physics of Complex Systems, Eötvös Loránd University
cDepartment of Information Systems, Eötvös Loránd University

dNetwork Management and Optimal Design Laboratory, School of Electrical and Computer
Engineering, National Technical University of Athens

Abstract

The NOVI Information Model (IM) and the corresponding data models are
the glue between the software components in the NOVI Service Layer. The
IM enables the communication among the various components of the NOVI
Architecture and supports the various functionalities it offers. The NOVI IM
consists of three main ontologies: resource, monitoring and policy ontology that
have evolved over time to accommodate the emerging requirements of the NOVI
architecture. This article presents the NOVI IM and its ontologies, together with
an overview of how the NOVI software prototypes have benefitted from using
the IM.

Keywords: Future Internet, knowledge representation, semantic web

1. Introduction

The NOVI project has defined and implemented an architecture that sup-
ports federation of e-Infrastructures towards a holistic Future Internet approach.
Software components within the NOVI Service Layer allow users to have a
unique interface to access and use resources in different testbeds. Access to
the testbeds, authorization policies, monitoring information and selection of
resources are integrated among platforms and implemented in the NOVI layer.

The definition of a common Information Model (IM) has from the start of
the project been the essential element to achieve the federation goals. Various
requirements have guided its development:

• Support of virtualization concepts to cater for virtualized resources;

• Semantics and context –awareness to support context-aware resource se-
lection;

∗Corresponding author: vdham@uva.nl

Preprint submitted to Elsevier October 9, 2013

• Vendor independency as the different virtualized infrastructures have hard-
ware and software from different vendors;

• Support of monitoring and measurement concepts, such that monitored
entities along with the measurement units are uniformly described;

• Support of management policies.

The model that we have created and present here satisfies the above require-
ments and consists of the following features:

• Virtualization is modeled explicitly for both computing and networking
devices;

• OWL is the language chosen to define the model;

• No vendor specific assumptions are made in the model;

• The model is modular and composed of three main ontologies: a resource
ontology, the monitoring ontology and the policy ontology.

This document presents the NOVI IM ontologies, with a focus on the classes
and properties that have been defined. We start the article with an overview of
related work in Section 2. We then provide an overview of how the information
model is used in NOVI by illustrating the lifecycle of a user-request in Section 3.
In Section 4 we present the complete model, with its classes and properties.
Section 5 provides a global overview of the implementation in the NOVI Service
Layer and how the information model was incorporated. Section 6 concludes
the article by highlighting the potential use of the model after the completion
of the project.

2. Related Work

Numerous efforts have been done in the past few years to develop new in-
formation models that are capable to describe network resources, tools and
management policies. However, each of them focuses on specific problems and
is not general enough to express all the aspects of a such complex system as
NOVI, which consists of virtualized and physical resources, substrate and slice
monitoring, and network policies as well.

The Common Information Model [1] is produced by the Distributed Man-
agement Task Force (DMTF) [2] standards organization. CIM is an object-
oriented information model described using the Unified Modelling Language
(UML). This information model captures descriptions of computer systems, op-
erating systems, networks and other related diagnostic information. CIM is a
very broad and complex model, the current UML schemata of the network model
span over 40 pages, the total model is over 200 pages. The model is capable of
capturing the information with a very high level of detail, yet provides almost

2

no abstraction layer above this, making it very hard to reason generically using
this model.

The Directory Enabled Network-new generation model [3] is an object-
oriented information model that describes the business, system, implementation
and deployment aspects of managed entities as well as their relationships. DEN-
ng was created following the policy based management concept [4] employing
policies to govern the behavior of the managed environment in a domain inde-
pendent way. DEN-ng also included ontologies to augment its initial modeling
framework, seeing the various data models as facts and ontologies as the means
to infer based on the facts, i.e. the model themselves.

The Network Description Language NDL [5] is an information model devel-
oped by the University of Amsterdam to describe (computer) networks. NDL
comprises of a series of schemas that categorize information for network topolo-
gies, network technology layers, network device configurations, capabilities, and
network topology aggregations. The main use-cases so far have been generation
of network maps, lightweight offline path finding and more recently multi-layer
path finding, and network topology information exchange. Virtualization is not
explicitly defined in NDL. However, it is quite possible that this can be solved
with a simple extension, but NDL is currently not able to describe information
required for measurement and monitoring, nor is there support for the descrip-
tion of policies or current and desired state modeling.

For monitoring and network measurement data, the MOMENT[6] ontology
could be a very good basis. Originally, it was developed to describe various net-
work measurement data collected by different research groups and stored in het-
erogeneous databases, providing us a formal description of a machine-readable
vocabulary that represent concepts and formal semantics of the network mea-
surement domain. The existing data in various databases are generally repre-
sented in infrastructure-specific ways, with no standardization of data types,
units and structures. In order to enable the successful interoperability of these
originally independent systems, the MOMENT ontology can help to generate
mappings between the different information models, data types and units. How-
ever, MOMENT ontology does not deal with network resources, virtualization
and policies at all.

After the analysis of the existing ontologies, we concluded that none of these
information models fulfill all the requirements needed for describing such a com-
plex communication network with the support of virtualization, monitoring and
policies as we have in NOVI. Additionally, while some components of the exist-
ing models were suitable, they are impossible to combine with others. We have
taken the existing studies as input for our model, especially the developments
in the Network Markup Language WG[7], which was still in draft stage at the
start of the NOVI project.

3. Example Use Case Explaining the NOVI Architecture

The high level overview of the NOVI Data, Control and Management ar-
chitecture, reported in [8], is presented in Figure 1. In this section we will go

3

Figure 1: Overview of the NOVI architecture

through the lifecycle of a request and show how the different services of NOVI,
contribute to a request, so as to explain the NOVI architecture. In this section
we lay out everything in order to provide a better idea of what happens and
exactly how intertwined the NOVI IM is with the working of all services. In
NOVI we categorize requests into three different types:

• A request is unbound if all the virtual links and nodes are not mapped to
physical resources.

• A request is bound if every virtual link or node is so mapped.

• A request is partially bound if only a subset of the requested virtual re-
sources are mapped to physical resources or if the set of requested virtual
resources are assigned to a specific platform (platform bound request).

In Figure 1 we see an overview of the NOVI architecture. At the top of the
Figure is a small screenshot of the NOVI Graphical User Interface (NOVI GUI),
which allows users to formulate requests and submit them to NOVI through the
NOVI Application Programming Interface (NOVI API). When initiated, the
GUI reads in the NOVI resource ontology to determine which concepts can be

4

used in formulating a request, and how these concepts can be linked together
using the different relations. This is all presented in a graphical way to the user,
via an intuitive drag-and-drop interface.

NOVI users are essentially users of the underlying federated platforms. The
NOVI service layer acts as intermediary for passing through the authentication
data between the users and the platforms, using the authentication API imple-
mented by the corresponding virtualized platform. Via the NOVI GUI, the user
can login using the credentials for his/her account at the virtualized platform
he/she is registered at. The GUI can then also retrieve the list of resources that
the user is authorized to use and their availability, utilizing the Resource In-
formation Service (RIS) along with the Policy Service (PS) and the Monitoring
Service (MS) of the NOVI architecture.

Once the user has finalized and submitted the request description at the
GUI, the request is translated to the OWL model, and dispatched to the NOVI
API. This makes sure that the request is in a format that the NOVI API can
deal with and contains all the requirements that the user has imposed.

The NOVI API then forwards the request to the Intelligent Resource Map-
ping service (IRM) that orchestrates the creation of the slice, with resources
drawn from the federated environment. In the case of an unbound or partially
bound request, IRM is responsible for resource mapping, utilizing appropriate
request partitioning and embedding techniques. To facilitate the mapping pro-
cess, resource registration is handled by the RIS, using information from the
RIS DB, the Monitoring Service (availability of substrate resources) and the
Policy Service (authorization information for the requester). If the request is
bound, IRM checks against RIS for availability and authorization information
on the resources.

Once a suitable mapping is found by the IRM, the request is extended to
contain all the bindings, and sent back to the RIS. The RIS then forwards
the request to the Request Handler for slice creation at the actual platform(s).
There, the request is translated from the NOVI IM to the format that the
testbed supports, so far only RSpec. Resource Specification (RSpec) is an XML
format, which describes testbed resources.

Should the request contain resources from different platforms, the NSwitch
Service is invoked. The NSwitch service identifies the configuration details in
the request for establishing data plane connectivity between virtual resources
residing in different platforms. The NSwitch Service then uses these details to
send configuration commands to the appropriate virtual resources, so that the
inter-domain link is setup.

Once the resources are all configured by the platform, the Request Handler
(RH), via the RIS and subsequently IRM, returns the outcome of the process
to the requester, along with information that enables user’s access to the slice.

The RIS saves the reservation and resource information to the RIS DB.
Should the user require more detailed information about the current status of
his/her resources, he/she can always invoke the MS via the NOVI - Slice Monitor
application to request monitoring tools to run, or results from running monitor-
ing tools. The user uses the identifiers contained in his request to unambiguously

5

communicate with the MS.

4. NOVI Information Model

This section describes the NOVI Information Model. The section provides
a comprehensive documentation of the complete information model, divided
in its three components. First we provide a general overview, In section 4.1
we describe the Resource Ontology, in section 4.2 we describe the Monitoring
Ontology and its various parts, followed by a description of the Policy Ontology
in section 4.3.

Resource
Ontology

Monitoring
Ontology

Policy
Ontology

Figure 2: The NOVI ontologies

4.1. NOVI Resource Ontology

The NOVI Resource Ontology forms the basis of the NOVI Information
Model. It describes the most important concepts and resources that the NOVI
platform handles. This ontology is reused in the other ontologies, making sure
that all services in the NOVI layer are using the same concepts. A graphical
overview of the classes in the NOVI ontology is shown in figure 3.

The root element is the Resource, which is used as an abstract concept and
has three direct descendants:

• Node is used to represent physical nodes, and the subclass Virtual Node
is used to represent virtualized nodes, sometimes also called a ‘sliver’.

• Network Element is used to describe network connectivity of resources.
Interface is the point at which a resource connects (unidirectionally) to
the network, while a Link is used to describe direct connectivity between
Interfaces, and a Path can be used as an alias for longer paths through the
network. The Virtual Link is used to define a virtual connection through
the network, either a channel on a Link or a tunnel through the network.
The NSwitch is used to represent network connectivity provided by the
NOVI NSwitch service.

• Node Component describes the capabilities of Nodes. There is the reg-
ular elements of a computing node: CPU, Memory and Storage. Since
we deal with networked virtualized nodes, the Login Component is impor-
tant to describe how to log in to it. Finally, the Switching Matrix node

6

Resource

Network
Element

Interface Link Path

Node

Location

Service

is ais a

is a is a is a

Processing
Service

Memory
Service

Storage
Service

NSwitch
Service

is a is a is a is a

Node
Component

is a

CPU Memory Storage

is a is a is a

Group

is a

Topology

is a

Platform

Lifetime

Bidirectional
Interface

Bidirectional
Link Reservation

is a is a is a

Login
Service

is a

NSwitch Virtual
Link

is a is a

Virtual
Node

is a

Login
Component

Switching
Matrix

is a is a

Figure 3: Graphical overview of the classes in the NOVI Resource Ontology

7

component is used with nodes that perform network switching or routing
functionality.

It is important to note that the Network Elements in the ontology describe
unidirectional elements. This has been a conscious choice to follow the NML
model, which follows the philosophy that a unidirectional model can describe a
bidirectional model, but not vice versa. This does make the model somewhat
more verbose, but the network descriptions are not meant for human consump-
tion, so this does not matter that much.

The Service class aims to allow the user to express the service level desired.
This allows the user to decouple the desired service from the actual physical
implementation. The types and goals of the Service classes mirror the Node-
Component types. The only exceptions are the NSwitch Service and Switching
Matrix. The NSwitch Service is used to represent the capability mentioned in
the Network Element description above.

The Group element is used to create different kinds of groupings, some NOVI
specific groups are:

• Platform describes a particular testbed in the NOVI federation. Re-
sources can be linked to the class to denote membership of that platform,
and it can provide pointers to other information such as the management
service of that platform.

• Topology can define a group of resources that a user requests, or the
implementation of a users’ request.

• BidirectionalInterface defines how two (unidirectional) Interface ob-
jects are grouped together to form the physical interface.

• BidirectionalLink groups together two (unidirectional) Link objects are
grouped together to form the physical connection.

• Reservation groups together the resources that have been requested or
reserved for a user.

Finally we have two classes used for describing other metadata of reservations
or resources:

• Location describes (approximate) geographical location to describe that
resources share the same location. It can also be extended with properties
to describe GPS coordinates.

• Lifetime is mainly used to describe the time dimension of a reservation
(see below), but it can also be used to describe the availability of nodes,
e.g. that a Node explicitly has no Lifetime during a maintenance period.

These properties and relations between the different classes in the NOVI
ontology are discussed below:

8

• id and hasName define an identifier and a name respectively. Each Re-
source must have a unique identifier, which must be a Uniform Resource
Identifier (URI), and should also have a human readable name.

• startTime and endTime describe the time elements of the Lifetime object,
for example when a slice reservation starts and ends. The values must be
specified in the XML Schema dateTime format.

• locatedAt is used to describe the relation between objects and their Loca-
tion. This is used both for Nodes and Network Elements.

• hasComponent describes the relation between a Node and its NodeCom-
ponents, meaning that a Node has those components. Additional data
properties are used to specify the properties of those components, such as
hasCores, hasMemorySize, hasStorageSize, etc.

• hasIPaddress points to an IPAddress instance from the Unit ontology (see
section 4.2), which describes the IP address (v4 or v6) and its netmask.

• implementedBy is to describe that a VirtualNode is implemented on a
(physical) Node.

• contains describes that one element is part of a Group, for instance a user
defines a Topology object in his reservation, and then uses the contains
relation to describe which nodes are part of the Topology.

• federatedWith shows how Platforms are federated with other Platforms.

Figure 4 shows how the NOVI IM supports the description of network con-
nections. These descriptions can be used in various contexts, ranging from an
unbound reservation request (low detail) to a monitoring description (very high
detail). The NOVI IM supports three levels of detail for describing network
connections:

• Node Level A Node can be directly connected to another Node. This is
an abstract way of saying that two Nodes should be connected through
an underlying network connection.

• Interface Level An Interface can be directly connected to another Inter-
face, either through the switchedTo or connectedTo statements. con-
nectedTo describes a connection to an Interface on another Node, and
switchedTo describes an internal connection on the same Node.

• Link Level Interfaces can be connected to (unidirectional) Links as a source
and sink Interface to define a connection between two Interfaces.

To describe the relation between the Nodes, Interfaces and Links we have the
following properties: hasInboundInterface and hasOutboundInterface to describe
the relation between Interface objects and their Nodes. isSource and isSink to

9

Interface

hasInboundInterface

hasOutboundInterface

Node Link

isSource

isSink

connectedTo

switchedTo

connectedTo

Link

Link
provisionedBy

Path
provisionedBy

Network
ElementPath contains

next

Figure 4: Network connectivity properties defined in the NOVI resource ontology

describe the relation of the unidirectional Interface objects to the Link object,
which defines the connection between two Interfaces.

Finally, we have a Path object to allow the description of a path through
the substrate network. This Path object should be an ordered collection of (at
least) the Interface objects that uniquely define a path through the network.
The level of detail on the Path description can be varied to allow domains to
locally expand their part of the network path. Using the contains relation we
can define that NetworkElements are part of a certain Path. The next relation
is used to define the sequence within that group of elements.

4.2. NOVI Monitoring Ontology

In a federated virtual testbed environment monitoring is a fundamental
task. On the one hand monitoring enables other service components intelli-
gent decision-making, e.g. during the embedding of a virtual topology. On the
other hand testbed-users can also follow the current state of the network. Due
to the cross-domain nature of the system, however, it is not a trivial task to
provide federated monitoring functionalities. The heterogeneity of the feder-
ated networks (including network elements and monitoring tools) poses a major
challenge. NOVI tackled some of the most important related problems by elab-
orating a specific ontology to describe monitoring and network measurement

10

tasks. This semantic approach enables the flexible integration of a wide range
of monitoring tools, frameworks and databases.

In Sec. 3 the life cycle of NOVI operations are described through a use case
example. It is clear that many NOVI services are operating with the testbed re-
sources, so for a full operation of these services a proper description of resources
is necessary. In NOVI both the static and the dynamic information are required.
By static information, we refer to characteristics, which are constant for the re-
source, or may change very infrequently in time. For example, the number of
processor cores in a host machine is a constant static feature. Theoretically,
it can change only when the hardware is upgraded. In contrast to this, one
can collect characteristics, which are changing more dynamically, like the load
of a CPU core in the same machine. In NOVI the description of resources are
done at two abstraction levels. Besides characterizing the substrate resources
we also have to handle the virtual resources. Speaking at the resource level,
when the user requests a virtual testbed (a Topology), it may contain runtime,
dynamical constraints. For example the creation of a topology, where virtual
computing resources are allocated to hosts with a current memory utilization
not exceeding a limit and virtual links are mapped to physical links of prescribed
link utilization. Speaking at the virtual level instead, there is the monitoring
support for the virtual testbed. Given that the user successfully gets a virtual
topology, NOVI offers services to keep track of its certain temporal variables.
For example, a user is interested in the evolution of the round trip delay on the
given links of his topology. These two complementary abstraction levels split
between substrate monitoring and slice monitoring.

Practically, substrate and slice monitoring have a lot in common and this
fact was taken into consideration when designing the Monitoring Ontology. Nat-
urally monitoring data comes from various data generators, which are tools,
databases or services, and these generators speak different protocols to control
them or fetch data from them. Therefore this ontology supports a uniform rep-
resentation of monitoring functionalities in the federated environment extending
the Resource Ontology to incorporate the relevant concepts. The Monitoring
Ontology follows a modular design, see in Fig. 5. The idea behind defining
smaller pieces rather than a huge ontology, comes from two facts. Firstly this
model aims to be reusable by new future applications, secondly maintenance
and development remains easier for each block. Thus, concepts closer in their
meaning belong to the same small document component, and future applica-
tions may import only relevant pieces of the model. In the next subsections we
highlight the use of each pieces of the model.

4.2.1. The Unit model

The fundamental concepts of the Monitoring Ontology are laid down in the
Unit model, where the levels, dimensions, units and unit prefixes are defiined.

The MeasurementLevel or scales of measure comes from the statistics [9] i.e.
all measurements conducted in science are claimed one of the four different types
of scales that called “nominal”, “ordinal”, “interval” and “ratio”. These notions

11

Queries
by RIS or user

Site specific
configuration

Query model Task model Event model

Statistics model

Parameter model Feature model

Unit model
Resource
Ontology

Figure 5: The monitoring model follows a modular design. The figure shows the dependency
between the component modules. Items with a shaded background are components external
to the monitoring model.

in the model tell what operations make sense to apply on the samples, like or-
dering samples, taking their difference or blowing them by a factor. Dimensions
relate to one well defined level. For example if somebody is interested in the
source port of IP packets captured in an interface card, this particular number
is of nominal level, revealing the fact that ordering does not make sense for
this type of data, whereas timestamps of packet reception, which are of interval
level, both ordering and differencing makes sense.

A Dimension grasps the physical characteristic of a data entity. In the model
we differentiate between basic and derived dimension. This module also models
how derived dimensions relate to basic dimensions and/or other derived dimen-
sions, so as to follow how various metrics root from each other. This knowledge
is handy when there is no direct information of a given metric. For example du-
ration derives from calculating the difference between two time-stamps, which
are axiomatically taken fundamental.

For each dimension the corresponding natural Unit is indicated in the model.
Using the former example, a time-stamp has a default unit unixtimestamp,
whereas duration will fall back to second. Obviously, the derivations across
units are dealt by the model similarly to that of the dimensions, so the hierar-
chy of dimensions and that of the units show numerous patterns in common.
Model can handle transformation paths between compatible units using linear
transformation, taking a product, raising to a power or applying transformations
written in forms of regular expressions.

According to the model units may have various Prefixes. Sensible combi-
nations of prefixes and a unit are indicated by object properties. The model
handles prefixes of both base two and base ten. For instance one can infer from
the model that data quantities of duration dimension can have prefixes like milli,
micro, nano, etc.

12

4.2.2. The Feature model

The feature model is fairly flat, it declares the plethora of resource variables
which can be measured and collected. The commonly used metrics form the
classes, the names of the classes are self-explanatory. For example, different
individuals of MemoryFeature specify the state of a physical or virtual memory
resource (total, free, used, swapped) and analogously StorageFeature individuals
of this class refer to the state of a storage resource (free, used, quota). Processor-
Feature items refer to the state of a CPU (frequency, cores, load). Descendants
of DelayFeature describe one-way delay or round-trip delay over a network link
or path, whereas BandwidthFeature describes the capacity related metrics in
a link or over a network path (available, consumed, utilization). The rest of
the interesting features can be found in the MiscFeature class, like uptime of a
resource, or packet loss over a path.

The Feature model extends the Unit model. It is important to emphasize
here all features bear information about their dimension, so one can deduce the
natural and all the possible units of a given feature.

4.2.3. The Task model and the Parameter model

It is true that there are more tools that may measure the same metric. So
it makes sense to unify them to an extent and hide as much details about the
data generators from a data consumer as it makes sense. Still it is essential to
bind the tools operable in the resources or their results stored in repositories
and the feature metrics a user or a service look for together. The Task model
makes this bridge.

Notions of the Task model describe data generators and guide the unification
of the result data as well.

An instance of the Task class represents a measurement session, that is a set
of operations including the initialization, execution and termination of measure-
ment processes, and the gathering of measurement results. To generalize the
access to the monitoring tools, the task will have a unique driver implementing
the communication protocols, such as ssh, SOAP, XML-RPC, HTTP-REST or
DB. In order to properly set up the communication channel with the tools that
require authentication Task has an authentication type relation like username
and password or RSA-key based authentication.

A monitoring task also bears information of the execution plan for a given
network measurement. To this end, it consists of five predefined procedures to
be implemented. These are the prehook to initialize a monitoring session, the
starthook to launch an asynchronous jobs, the retrievehook specifying fetching
and digesting of logs, the stophook to terminate a job and the posthook to clean
up. Some of these hooks are optional depending on the tool. One can observe
that using these hook procedures, we can easily define both synchronous and
asynchronous measurements for short and long term monitoring scenarios.

The model targets to cover a wide range of monitoring tools, which are avail-
able to enable experimenters to monitor various metrics of the resources and the
network. The tools developed for the past decades serve for different purposes,
many of them only focus on a subset of the metrics and provide their users

13

with basically different capabilities. Some tools allows users to parameterize
and perform active measurements on demand, while others do not provide any
customization feature, merely return measurement data. The Parameter model
guides the unit aware description of the runtime parameters of the former set
of tools.

4.2.4. The Site specific configuration

In the federation for each site a configuration document contains Task indi-
viduals pinning down the available tools and binding them to the appropriate
features. As a proof of concept, in NOVI numerous command line applications
were mapped by the model, like ping, traceroute, iperf, etc. Furthermore,
some more complex measurement frameworks were used to demonstrate the
generality of the monitoring model.

Frameworks used in NOVI included the Service Oriented Network Measure-
ment Architecture (SONoMA) [10] a Web Service based network measurement
platform that is scalable, adaptable and open for scientists and other network
developers. SONoMA realizes a common and extensible active network mea-
surement framework that aims at decreasing the required time and efforts of
network experiment implementation. Its services can be accessed via a standard-
ized SOAP-based web services interface, not constraining the used programming
language. The SONoMA architecture consists of a central management system,
which submits experiments on a proper set of remote measurement agents in a
completely distributed manner. In addition, the results are not only forwarded
back to the user, but they are automatically stored in a public data repository,
called Network Measurement Virtual Observatory (VO) [11] as well.

Another mapped architecture is the Packet Tracking tool (PT) [12], which
is a multi-hop packet tracking architecture that provides the experimenter with
information on the paths that packets take throughout the network. Besides
that, it carries other hop-by-hop metrics like delay and loss, as well, and this
tool enables to measure the extent of cross-traffic and its influence on the exper-
imenter’s traffic. PT uses a hash-based packet selection technique that ensures
a consistent selection throughout the network while maintaining statistically de-
sired features of the sample to reduce the traffic overhead caused by the probes.

The Hades Active Delay Evaluation System (HADES) [13] is a network mon-
itoring tool providing performance measurements following the IETF approach
of RFC3393. It provides its users with different performance metrics such as
one-way delay, delay variations and packet loss. HADES was designed for multi-
domain delay evaluations with continuous measurements. HADES measurement
agents are generating bursts of UDP probes continuously throughout the day.
The experimenter can access the measured data via a web service interface, but
has no direct influence on the measurement process.

4.2.5. The Query model and the Statistics model

The purpose of this module is to cleanly bridge information request exchange
between data consumers and data generators. The following queries were de-
fined in the model: the BundleQuery is the simplest information request binding

14

a resource and a metric together, the BatchQuery is a similar request binding
a set of resources and one metric together and the SampleManipulationQuery
that describes statistical post processing of the data among them the formula-
tion of conditional checking, which can serve as watchdog signaling. A query
optionally may provide extra parametrization to fine tune task control and it
carries instructions how to serialize data, indicating e.g. CSV or JSON format.

Our intention was to go beyond just modeling data collection so we extended
the model with trivial data manipulating methods. Most often data consumers
are interested in aggregate results rather than a whole dump of log. Further
more, the use of this model can help automatize recognition of some malfunc-
tioning of a topology component or a stress in the requested virtual slice. The
three corresponding notions of the Statistical model are the Sample, the Sam-
pleOperator and the Condition.

Sample represents data quantities. It stands both for the raw data generated
by a tool and also for the data that have undergone some transformation. With
an abstract terminology, one can say that the domain and the range of data op-
erations are the same set, whose elements are called Samples. Magnifying into
this class we have the ReducedSample representing the reduction of the input,
such as the calculation various aggregates or resampling of the source of data.
To complement UnionOfSamples enumerates a combination data from different
sources of compatible type, i.e. matching dimension. The SampleOperator class
manifests the operations on the data, its disjoint subclasses are the Aggregator
projecting the sample set to the minimum, maximum, average, standard devi-
ation or the percentile, the Resampler filtering the sample set, like truncation,
ordering and shuffling, and the Condition that enables comparison of Samples.

It possible to express a whole chain of operations, based on the model the
non-trivial example expression can be formulated: “Calculate the 90% percentile
of the last 100 samples”.

4.3. NOVI Policy Ontology

The Policy Service provides the functionality of a policy-based management
system, where policies are used to define the behaviour governing the managed
environment.

Policies are expressed using the NOVI Policy Ontology, which supports the
following policies:

• Authorization policies that specify authorization rights of users within the
federation

• Event-condition-action policies that enforce control and management ac-
tions upon certain events within the managed environment.

• Role-based-access control policies that are used to assign users to spe-
cific roles, and where different permissions/usage priorities on virtualized
resources are granted to each role.

15

• Mission policies are used to define inter-platform duties, i.e. the manage-
ment obligations that a platform must fulfill against its peer platform in
a NOVI federation.

The NOVI policy ontology provides the primary support for the operation of
the Policy Service. These concepts are linked to the networking resources de-
scribed using the NOVI resource ontology. The OWL representation of the
Policy ontology can be seen in [14].

The main classes of Policy Ontology are:

• ManagedEntity is the entity that the Policy Manager is able to manage.
This includes virtual resources and services within the NOVI federation;

• NOVIUser is a user of NOVI. All users of NOVI are basically users of
the underlying platforms, but after authentication, they are considered as
NOVIUsers and the appropriate object is created to keep the necessary
information;

• Platform describes a particular testbed in the NOVI federation. This
class is defined in the core ontology;

• PolicyAction is an action that can be performed by the Policy Service;

• PolicyEvent is an Event that can be caught by the Policy Service to
trigger the proper actions;

• PolicyCondition is a condition that needs to be checked before triggering
the actions;

• ManagedEntityMethod is a method of a ManagedEntity which is
used to interact with it. Each ManagedEntity has a set of such methods;

• ManagedEntityProperty is a property of a ManagedEntity. These
properties can be used as conditions for Policies applied on a Managed-
Entity. For example if we want to reserve a Virtual Node that has a
ManagedEntityProperty equivalent to a maximum reservation time
we can have a Policy that uses the condition that the user requested
reservation time is less that a MaxReservationTime.

A ManagedEntity has several subclasses:

• ManagementDomain is a Domain that may contain other Management-
Domains and ManagedEntities. It gives the ability to manage the en-
tities in a common way. It is also a subclass of ManagedEntity to give
the ability to be managed by itself;

• Policy is an abstract class to define policy rules that will be used to
manage the ManagedEntities;

• Resource is the resource on which the Policies are applied. This class is
the same as the one defined in the core ontology;

16

Figure 6: Visual representation of Object Properties of authorization Policies

• Service is the service on which the Policies are applied. This class is the
same as the one defined in the core ontology;

• Event is the event as it is stored in the Policy Engine;

• NOVIRole is a role that a user of NOVI may have;

• MissionController is the class that loads and manages the Mission-
Policies on the remote Platform;

• MissionInterface is the class that provides a generic way of expressing
missions in order to specify later the specific class that will be used to the
policies included in a MissionPolicy.

The Policy class has also a number of subclasses:

• ECAPolicy is an Event-Condition-Action Policy Rule, i.e. when an event
occurs, and the conditions are met, the action triggers;

• MissionPolicy is a set of Policies that define the duties of a Platform
with respect to other Platforms within a NOVI federation;

• Role-based-access Control Policy is a Policy used to define access
rights of the users according their Role;

• Authorization (Access Control) Policy is a Policy used to define Autho-
rization rights to the users according their Role in NOVI.

Figures 6 7 8 provide visual representation of the different types of Policy
classes and their relations via the properties defined in the NOVI Policy Ontol-
ogy.

As we can see in 6 AuthorizationPolicy hasPolicySubject a Manage-
dEntity and hasPolicyTarget also a ManagedEntity. This is to say that
each Authorization policy can be applied on a target Managed Object (ex. a
Resource, Service, etc) and it will refer to a specific ManagedEntity as a sub-
ject for the policy. The subject can be a NOVIRole, but in the description it
was preferred to use the ManagedEntity to leave the definition more generic.
Additionally Authorization Policies have some data properties for the definition
of the Enforcement Points for the policies. They can be on Target or on Sub-
ject side and for request or for response. Each Event-Condition-Action Policy

17

Figure 7: Visual representation of Object Properties of ECA Policies

Figure 8: Visual representation of Object Properties of Mission Policies

18

is consisted of three parts. The event that triggers the policy, the conditions
that should be satisfied in order to execute the actions and the actions. So
as we can see in 7 each ECAPolicy hasPolicyEvent , hasPolicyCondition
and hasPolicyAction . PolicyEvent hasEvent a ManagedEntity. Poli-
cyCondition hasCondition ManagedEntityProperty since conditions are
Managed Entity methods and PolicyAction hasAction a ManagedEnti-
tyMethod since actions are Managed Entities methods. In 8 we can see that
MissionPolicy hasPolicy an ECAPolicy. This provides the ability to define
the ECAPolicies included in a MissionPolicy. onStart and onStop intro-
duce the relationships between a MissionPolicy and PolicyAction. They
define the PolicyActions that should be executed when a MissionPolicy is
started and terminated. hasInterface introduces the relationship between a
MissionPolicy and MissionInterface. Each MissionPolicy has a set of lo-
cal and remote MissionInterfaces on which the ECAPolicies are applied.
acceptsEvent, providesEvent and raiseEvent introduce the relationships
between MissionInterface and PolicyEvent. Each interface is able to accept,
provide and raise PolicyEvents in order to interact with other ManagedEnti-
ties. hasLoaded introduces the relationship between MissionController and
MissionPolicy. Each MissionController can load some MissionPolicies,
on a remote Platform.

5. Implementation

This section describes how the NOVI Information model was implemented
and used in the NOVI Services. A first important step for using an information
model is to pour it into a data model. Then we describe how the different
services have benefitted from the NOVI IM. For a more detailed discussion of
the implementation of the NOVI IM, see [15].

5.1. Data Model

The NOVI Information Model has been created using the semantic web
approach. So as a data model we have used OWL and RDF. For storing the
RDF triples in the NOVI repository we use the Sesame[16] RDF triple store.
For some of the services in NOVI, it is easier to deal with Java objects than
RDF data. So the Data Model is represented as Java Classes and the Alibaba
library[17] is used in the creation of the data model, and in the conversion of
RDF triples to Java objects. This data model makes processing of data easier
and facilitates the communication between the NOVI services.

5.2. NOVI Services

The GUI and API are the user interaction components and they are used by
the user as entry point for interaction with NOVI Service Layer. The GUI is used
for composing slice requests. These are then submitted using the NOVI API.
Further interaction with the user always involves the NOVI API, which involves

19

the conversion of these requests to the appropriate NOVI IM representation for
processing.

The Resource Information Service uses both NOVI Resource and Policy IM
to store information in the database. The testbed physical substrate is stored
in RIS as a Topology. The slices are stored as a Reservation, which contain
all the necessary slice information. The RIS can also accept a resource discov-
ery request, it then contacts the Monitoring Service to get the non-functional
characteristics (availability) of the appropriate physical machines, utilizing the
Monitoring ontology. RIS exploits the semantic query language SPARQL [18],
in order to find the available resources which meet the requirements posed by the
user. It dynamically constructs SPARQL queries based on the given topology
request.

The Intelligent Resource Mapping utilizes the IM for identifying functional
and non-functional characteristics of the requested Resources before reservation
and for expressing mapping information in the resulting bound request that is
further processed by the NOVI service layer.

The Policy Service uses the Resource and Policy ontologies to communicate
and enforce policies via the NOVI Service layer. All Physical Resources provided
by each Platform, described using the NOVI IM, are instantiated as Ponder2
Java Objects. Ponder2[19] is the policy Engine and specifies policies in a subject-
action-target format, with optional fields such as constraints, triggers etc.

The Request Handler allows the Resource Information Service (RIS) to re-
trieve the substrate topology and the description of available substrate resources
including their functional characteristics. The RH service provides an abstrac-
tion of the virtualized platform characteristics, according to the NOVI IM.

The Monitoring Service heavily relies on the Resource and Monitoring on-
tologies. Queries to the Monitoring Service are represented as an OWL doc-
ument importing the relevant parts of the NOVI Information model comple-
mented by the internal site-specific knowledge. Data returned to the requester
can be of various formats as requested in the query, but in the response the
meta-information with all the mappings to the corresponding concepts of the
NOVI Information model are indicated.

The NSwitch manager receives Topology class objects and based on the
Resource ontology it decomposes them and then performs actual configuration
of federated links on resources that participate in the slice federation.

6. Conclusion

The NOVI information model defines the semantics to describe NOVI re-
sources and services, express requests, supports the NOVI policy based man-
agement system and unifies active and passive monitoring information of the
testbeds. It enables the interoperation among the NOVI software components.

The development of the NOVI IM has closely followed the evolution of the
NOVI architecture as a whole. Since the delivery of the first draft of the model
several changes have been introduced to better match the emerging require-
ments. The choice of Semantic Web languages, and specifically the choice for

20

OWL, has proven to be a good one: additions, extensions and changes have
been easily incorporated.

The strength of the NOVI model is that while it fully satisfies the NOVI
needs, it is also generic enough to be usable outside the scope of the project. In
fact, we have received requests from other FI projects who are looking to adopt
the NOVI IM, such as GENI, GEANT, MANTYCHORE, and others.

6.1. Future of the NOVI Information model

At the start of the NOVI project there were not many information mod-
els for Future Internet platforms, and certainly none for creating a federated
environment of these. In section 2 we have analyzed the state of the art. We
have highlighted different models and selected the most relevant models to work
from. During the project we leveraged the definitions and experiences of these
models.

During the creation and implementation of the NOVI models we have also
shared our experiences with other projects, such as GEYSERS, and most impor-
tantly the Network Markup Language (NML) standardization working group
at the Open Grid Forum. With our practical experiences in NOVI we have
been able to provide an important contribution to the now standardised NML
schema[7].

During the project several external parties have expressed interest in our
work: we also exchanged our experiences with the NDL-OWL team in GENI.
In the final stages of the NOVI project we have also started collaborating with
the MANTYCHORE project, which expressed an interest in using our model for
describing their infrastructure and integrating it into their software. Together
with the NML standardization effort, this shows that the NOVI information
model has provided an important contribution to the FI community. Given the
number of the current interested users and projects, and some early adopters
we expect the NOVI information model will be used in its current form or with
possible extensions by the Future Internet community in the coming years.

Acknowledgments

This work was partially supported by the European Commission, 7th Frame-
work Programme for Research and Technological Development, Capacities, Grant
No. 257867 – NOVI. Furthermore, this publication was supported by the
Dutch national program COMMIT and the GigaPort 2013 Research on Net-
works project. The authors thank the partial support of the EU FP7 OpenLab
project – Grant No.287581 –, the EIT ICTLabs FITTING project, the MAKOG
Foundation and the EITKIC 12-1-2012-0001 project supported by the Hungar-
ian Government, managed by the National Development Agency.

References

[1] DMTF’s common information model, http://www.dmtf.org/standards/
cim.

21

http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/cim

[2] Distributed Management Task Force (DMTF), http://www.dmtf.org/.

[3] Directory Enabled Networks – Next Generation, http://

autonomic-management.org/denng/index.php.

[4] M. Sloman, Policy driven management for distributed systems, Journal of
Network and Systems Management 2 (1994) 333–360.

[5] J. van der Ham, P. Grosso, R. van der Pol, A. Toonk, C. de Laat, Using
the network description language in optical networks, in: Tenth IFIP/IEEE
Symposium on Integrated Network Management, 2007.

[6] MOMENT Project Deliverable, D3.2 Final specification of the unified in-
terface.

[7] J. van der Ham, F. Dijkstra, R. Lapacz, J. Zurawski, Network markup
language base schema version 1, GFD.206 (2013).

[8] L. Lymberopoulos, M. Grammatikou, M. Potts, P. Grosso, A. Fekete,
B. Belter, M. Campanella, V. Maglaris, Novi tools and algorithms for fed-
erating virtualized infrastructures, Future Internet – From Technological
Promises to Reality (2012) 213–224.

[9] S. S. Stevens, On the theory of scales of measurement, Science.

[10] B. Hullár, S. Laki, J. Stéger, I. Csabai, G. Vattay, SONoMA: A Service
Oriented Network Measurement Architecture, in: TridentCom 2011, 2011.

[11] P. Mátray, I. Csabai, P. Hága, J. Stéger, L. Dobos, G. Vattay, Building a
prototype for network measurement virtual observatory, in: Proceedings of
ACM SIGMETRICS, 2007, mineNet.

[12] T. Santos, C. Henke, C. Schmoll, T. Zseby, Multi-hop packet tracking for
experimental facilities, in: Proceedings of the ACM SIGCOMM 2010 con-
ference, SIGCOMM ’10, 2010.

[13] P. Holleczek, R. Karch, R. Kleineisel, S. Kraft, J. Reinwand, V. Venus,
Statistical characteristics of active ip one way delay measurements, in: Pro-
ceedings of the International conference on Networking and Services, ICNS
’06, 2006.

[14] Policy IM OWL file, http://wiki.fp7-novi.eu/pub/WP2/Documents/

policy_imV4.owl.

[15] J. van der Ham, W. Adianto, F. Farina, P. Grosso, Y. Kryftis, A. Monje,
C. Papagianni, B. Pietrzak, C. Pittaras, J. Steger, C. V. Lopez, Novi deliv-
erable 2.4: Final information and data models plus report on prototypes,
http://www.fp7-novi.eu/deliverables/doc_download/71-d24.

[16] Sesame rdf triple store, http://www.openrdf.org.

22

http://www.dmtf.org/
http://autonomic-management.org/denng/index.php
http://autonomic-management.org/denng/index.php
http://wiki.fp7-novi.eu/pub/WP2/Documents/policy_imV4.owl
http://wiki.fp7-novi.eu/pub/WP2/Documents/policy_imV4.owl
http://www.fp7-novi.eu/deliverables/doc_download/71-d24
http://www.openrdf.org

[17] AliBaba, website: http://www.openrdf.org/alibaba.jsp, http://www.

openrdf.org/alibaba.jsp/.

[18] SPARQL query language for RDF, http://www.w3.org/TR/

rdf-sparql-query/.

[19] Ponder2 policy framework, http://ponder2.net/.

23

http://www.openrdf.org/alibaba.jsp/
http://www.openrdf.org/alibaba.jsp/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://ponder2.net/

	Introduction
	Related Work
	Example Use Case Explaining the NOVI Architecture
	NOVI Information Model
	NOVI Resource Ontology
	NOVI Monitoring Ontology
	The Unit model
	The Feature model
	The Task model and the Parameter model
	The Site specific configuration
	The Query model and the Statistics model

	NOVI Policy Ontology

	Implementation
	Data Model
	NOVI Services

	Conclusion
	Future of the NOVI Information model

