
Model-Driven So�ware Engineering in Practice:
Privacy-Enhanced Filtering of Network Tra�ic

Roel van Dijk
Netherlands Forensic Institute
The Hague, The Netherlands

dijk@holmes.nl

Christophe Creeten
Netherlands Forensic Institute
The Hague, The Netherlands

christophe@holmes.nl

Jeroen van der Ham
Delft University of Technology

Delft, The Netherlands
National Cyber Security Centre
The Hague, The Netherlands
jeroen.vanderham@ncsc.nl

Jeroen van den Bos
Zuyd University of Applied Sciences

Heerlen, The Netherlands
Netherlands Forensic Institute
The Hague, The Netherlands

jeroen@infuse.org

ABSTRACT
Network tra�c data contains a wealth of information for use in se-
curity analysis and application development. Unfortunately, it also
usually contains con�dential or otherwise sensitive information,
prohibiting sharing and analysis. Existing automated anonymiza-
tion solutions are hard to maintain and tend to be outdated.

We present Privacy-Enhanced Filtering (PEF), a model-driven pro-
totype framework that relies on declarative descriptions of pro-
tocols and a set of �lter rules, which are used to automatically
transform network tra�c data to remove sensitive information.
This paper discusses the design, implementation and application of
PEF, which is available as open-source software and con�gured for
use in a typical malware detection scenario.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering;Domain speci�c languages; • Security and privacy
→ Usability in security and privacy;

KEYWORDS
model-driven engineering, domain-speci�c languages, open-source
prototype, privacy-enhancing technology
ACM Reference format:
Roel van Dijk, Christophe Creeten, Jeroen van der Ham, and Jeroen van
den Bos. 2017. Model-Driven Software Engineering in Practice: Privacy-
Enhanced Filtering of Network Tra�c. In Proceedings of 2017 11th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Paderborn,
Germany, September 4–8, 2017 (ESEC/FSE’17), 6 pages.
https://doi.org/10.1145/3106237.3117777

The work described in this paper was carried out as part of the Privacy-Enhanced
Filtering-project, which was funded by a grant from the Secure through Innovation-
programme of the Dutch National Coordinator for Security and Counterterrorism.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5105-8/17/09.
https://doi.org/10.1145/3106237.3117777

1 INTRODUCTION
As more systems become connected, the amount of data passing
through networks increases. This data is an important source of
information for many tasks, including security analysis, debugging
and optimization of the involved systems as well as in a broader
sense, scienti�c research. Unfortunately, public datasets are rare
because network tra�c data often contains private, con�dential
or otherwise sensitive information, such as information about the
internal network layout of an organization.

A solution is to anonymize or otherwise remove sensitive in-
formation from network tra�c data. Tools exist to perform this
task, but are often di�cult to use, understand and extend and (as
a result) tend to be outdated. This is especially a problem for the
typical end-users of tools in this domain, technical users such as
security and privacy o�cers that do not generally have extensive
software engineering skills.

We propose a model-driven approach to network tra�c data
�ltering, using declarative descriptions of network protocols and
separated transformation rules. In this paper we describe the de-
sign and an open-source prototype implementation in a �ltering
framework called Privacy-Enhanced Filtering (PEF)1. The frame-
work comes con�gured to perform �ltering in a popular malware-
detection scenario, where DNS packets are transformed to remove
sensitive information.

Our practical evaluation shows that the framework performs its
tasks correctly, while relying on declarative protocol descriptions
for parsing and unparsing (serializing). Additionally, we discuss
trade-o�s and design considerations in the development of the
framework, as well as future directions to let end-users take full
advantage of this approach.

The rest of this paper is organized as follows. We provide some
background on the domain of network tra�c analysis in Section 2.
In Section 3 we present a high level design of a model-driven ap-
proach towards developing a network tra�c anonymizer, followed
by a description of the implementation of PEF in Section 4. Section
5 describes the scenario that we have used to develop PEF and for
which it is precon�gured as released. We discuss our experiences
and trade-o�s in Section 6 and conclude in Section 7.

1https://github.com/NCSC-NL/PEF

860

https://doi.org/10.1145/3106237.3117777
https://doi.org/10.1145/3106237.3117777
https://github.com/NCSC-NL/PEF

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany R. van Dijk, C. Creeten, J. van der Ham, and J. van den Bos

2 NETWORK TRAFFIC ANALYSIS
Network security often depends on detecting speci�c signatures
in network tra�c data. There are however many other common
patterns, such as the use of some speci�c protocol, some interaction
model or communication with a speci�c set of servers. All these
things can indicate whether the security of the network runs spe-
ci�c risks, or even whether computers on the internal network may
have already been compromised.

Analyzing network tra�c is also useful in the context of appli-
cation development and maintenance, where detecting patterns
in speci�c use cases can help to debug problems or optimize com-
munication patterns. Especially with large applications with many
users, typical usage of an application may be di�cult to determine
but can be quickly gleaned from network tra�c data.

This leads to a more general scienti�c research area around
networking, which depends heavily on available data and datasets.
A widely cited dataset has been generated by DARPA, but is already
almost 20 years old[17]. The situation has improved since the launch
of the IMPACT project[6], making it possible for researchers from
di�erent countries to access computer security related datasets.
These datasets are not publicly available though, because they may
contain sensitive data.

2.1 Challenges around Sharing Network Tra�c
The most common reason that network tra�c is not available for
scienti�c research is that it contains con�dential or private informa-
tion. This is not only present in the content of the network tra�c,
even themetadata of network communication, the header-data, may
still contain personally identi�able information, or other sensitive
information. Examples include IP-addresses and MAC-addresses, but
it may also be timing information that can be correlated to existing
datasets.

This sensitivity of network tra�c has been an issue for scienti�-
cally shared data. Allman and Paxson[1] discuss the shortage of net-
work trace datasets, but more importantly the issues and etiquette
of dealing with these datasets. De-anonymizing measurement data
is an important research topic, Allman and Paxon conclude that
�ndings on speci�c datasets should be reported in a careful manner.

2.2 Automated Anonymization Tools
Anonymization of network tra�c is possible, but is generally con-
sidered very di�cult to do[19]. While there has been some research
on tra�c anonymization, only a few tools are available that imple-
ment anonymization broadly. Most notable and with an extensive
feature set are pktanon[8], anontool[14] and PCAPAnon [16].

Anonymization frameworks and libraries, including those men-
tioned above, generally implement their functionality in C, exposing
con�guration options at the level of policies and transformation se-
lection. The protocol parsers are either reused from existing frame-
works such as Wireshark or implemented in a custom library. As a
result, their target audience cannot easily extend or evolve protocol
de�nitions or add new protocols to support. The complexity in
maintaining such frameworks is also re�ected in that most systems
are not actively maintained, which has caused them to quickly
become outdated.

3 A MODEL-DRIVEN APPROACH
Model-driven engineering (MDE) [21] is a good �t for addressing
the challenges of network tra�c �ltering. Its focus on developing a
domain-speci�c language or notation allows end users to develop
and adapt solutions without having to understand or worry about
the underlying implementation details. This means that adding new
or maintaining existing protocol speci�cations and transformation
rules can potentially all be handled by security and privacy o�cers
directly, instead of relying on software engineers.

Additionally, because the underlying implementation is decou-
pled from these speci�cations, it can be evolved without knowledge
of the current state of protocol speci�cations and transformation
rules. In this case, the software engineers can freely optimize pars-
ing and transformation code or add enhancements to scalability
and other non-functional aspects without having to migrate or
re-implement the domain logic.

A conceptual design of a solution in this area is shown in Figure 1.
At a typical location where data is captured between an internal
network and the internet, a system can be placed that copies and
�lters all data before passing it on to some third party or directly
into an intrusion detection system (IDS). In our design this system
is split into three separate tasks that each maps well onto a model-
driven approach: Parse, Transform and Unparse.

The Parse task uses speci�cations of network protocols to imple-
ment a parser for data in those protocols. Binary data is converted
into a structured representation inmemory, which is then passed on.
The Transform task uses transformation rules to replace speci�ed
values with some (derived) value. For example, �elds that have been
marked in the speci�cation as privacy-sensitive may be replaced or
transformed, in order to remove (part of) their content.

Finally, the Unparse task does the reverse of the Parse task, by
serializing the structured representation back into a binary data
stream. To accomplish this, it can use location information in the
structured representation as well as the protocol speci�cations. By
serializing back into a valid network tra�c stream, the output can
be used by regular network analysis tools such as Wireshark, even
though the data has been transformed.

4 THE PRIVACY-ENHANCED FILTERING
FRAMEWORK

We have created Privacy-Enhanced Filtering (PEF), an open-source
prototype framework that transforms network tra�c in network
capture �les. The prototype can be con�gured to transform parts of
network tra�c that match speci�c criteria. Each network packet is
processed in three steps: parsing the packet, transforming speci�ed
values and serializing the parsed values back into a valid network
packet. It realizes the model-driven design discussed in the previous
section.

4.1 Parsing Binary Data with M����
M����2 is a Java library for parsing binary data formats, using
declarative descriptions. It was developed at the Netherlands Foren-
sic Institute to improve parsing of binary data, and is available as
open source. In digital forensics, parsing binary data is a major

2https://github.com/parsingdata/metal

861

https://github.com/parsingdata/metal

Model-Driven So�ware Engineering in Practice:
Privacy-Enhanced Filtering of Network Tra�ic ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Internet Private
network

Privacy
Enhanced
Filtering

Intrusion
detection
system

Some
third
party

transform

parse

unparse

valid
packets

valid
packets

Figure 1: Personally identi�able information is automati-
cally removed from captured network tra�c data.

concern as nearly all digital evidence resides in often large amounts
of binary data, such as live memory dumps, digital storage devices
and network captures.

Traditionally, handling of binary data was a matter of hand-
crafted parsers, which were di�cult to extend and evolve. A data
description language such as M���� makes it possible to create
speci�cations of the data formats to be supported, completely sep-
arate from the underlying implementation of the eventual parser.
This makesM���� well-suited for PEF: parsing network packets is
achieved by declaratively specifying the required network proto-
cols, which are essentially just a special case of nested data formats.

4.1.1 Composing Parsers. Declarative descriptions inM���� are
created using a Java internal DSL. Every statement in the M����
DSL is either a token or an expression. There are two types of tokens:
terminals and non-terminals.

A terminal token inM���� is the def token, which reads bytes
from the input. The non-terminal tokens provide a way to combine
other tokens into more complex structures, such as sequences of
tokens (seq), choices between tokens (cho), repetition of a token
(rep) or conditional parsing of a token (pre and post).

Apart from these typical regular expression-style tokens,M����
also provides tokens to parse more complex data structures. Binary
data formats often contain pointers to data structures at speci�c o�-
sets in the input data. The sub token allows for location-dependent
parsing, by parsing tokens at speci�c o�sets. The tie token allows
for nested parsing, e.g., parsing a token inside the result of some ex-
pression, which typically refers to (a composition of) earlier parsed
values.

There are many di�erent uses of expressions in token de�nitions.
Examples are de�ning the size of terminal tokens or validating the
value of some parsed value based on data elsewhere in the input
data (both common in data-dependent parsing[10]).

Expressions are capable of operating on the value currently
being parsed, referencing earlier parsed values or constant values.
Apart from the regular arithmetic and bitwise operations, there
are additional data handling expressions such as fold, concatenate
(cat) and map. All expressions handle and return lists of values,
which is useful in binary data formats where data dependencies
are often more complex than only referring to directly preceding
values.

M���� is byte-oriented, i.e., �eld lengths are expressed in num-
ber of bytes. Most binary data structures can be described using
this approach, which makes it generally well-suited. It does some-
times pose a challenge when specifying smaller data structures
such as bit �elds or compression tables (e.g., Hu�man tables). Even
then, bitwise expressions can be used to specify these data formats
correctly.

How to interpret values in comparisons can be con�gured in an
encoding object used by the parser. This object is used to specify the
interpretation of numeric values (such as endianness and whether
they are signed or not) and strings (character encoding).

4.1.2 Executing Parsers. A constructed parser can be run by
invoking the parse-method on a token, passing an input stream
and an object specifying encoding defaults to it. Parsing succeeds
if the top-level token that was invoked returns successfully, which
indicates that all data could be read and that a path exists through
the composition of tokens that satis�es all predicates.

Upon success, the parse result is stored in a graph structure.
Each node in this graph corresponds to a token in the declarative
description. Intermediate nodes correspond to the non-terminal
tokens, such as sequences, choices and repetitions, the leaf nodes of
the graph correspond to the terminal tokens, and contain the parsed
values in the input stream. Each parsed value not only contains
the bytes that were parsed, but also the o�set at which these bytes
occurred in the original stream.

The returned data structure is a graph and not a tree, because
M���� supports parsing of circular data structures such as circular
linked lists. To prevent parsing a circular data structure from cre-
ating a loop, it employs a cycle detection mechanism that triggers
when a token is parsed at a location where the same (or an identical)
token was previously parsed already. In this case the loop is created
in the graph and parsing continues with the next token.

4.2 Parse
PEF uses M���� to specify network protocols, which are used to
parse captured network packets. The protocols that have been
implemented in this prototype are:
• Link Layer: Ethernet 2 Frame
• Internet Layer: IPv4, ICMPv4, IPv6 (partially)
• Transport Layer: UDP, TCP
• Application Layer: DNS-formatted application data (regular

DNS, MDNS, LLMNR, NBNS)
Figure 2 shows an example of a declarative description of the IPv4

header using theM���� DSL. The header is de�ned as a sequence

862

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany R. van Dijk, C. Creeten, J. van der Ham, and J. van den Bos

Token IPV4_HEADER = seq (
de f (" v e r s i o n i h l " , 1 ,

and (
eqNum (shr (s e l f , con (4)) , con (4)) ,

gtEqNum (and (s e l f , con (0 x0F)) , con (5))))
d e f (" dscpecn " , 1) ,
d e f (" i p l e n g t h " , 2 , gtEqNum (con (2 0))) ,
d e f (" i d e n t i f i c a t i o n " , 2) ,
d e f (" f l f r " , 2) ,
d e f (" t i m e t o l i v e " , 1) ,
d e f (" p r o t o c o l " , 1) ,
d e f (" headerchecksum " , 2) ,
d e f (" i p s o u r c e " , 4) ,
d e f (" i p d e s t i n a t i o n " , 4)

) ;

Figure 2:M���� token of the IPv4 header

of ten �elds[20]. The sequence (seq) token requires that all nested
tokens should parse successfully in the order as speci�ed. In this
case, the ten nested tokens are all de�ne-value (def) tokens. A def

token speci�es a value to parse from the input stream, and is de�ned
by a name, a length in bytes, and an optional predicate.

The statement def(�iplength�, 2, gtEqNum(con(20))) de-
�nes a �eld named �iplength�, which has a length of 2 bytes.
The predicate gtEqNum(con(20)) states that the value of this �eld
should be larger than or equal to 20, as de�ned in the IPv4 speci�ca-
tion. If this value could be read, but its interpreted value is smaller
than 20, the parsing of the def fails, and because of that the parsing
of the enclosing seq fails as well.

Predicates on values can be more complex, as is seen in the
�versionihl� �eld. Its predicate:

and (
eqNum (shr (s e l f , con (4)) , con (4)) ,

gtEqNum (and (s e l f , con (0 x0F)) , con (5))))

states that two conditions have to be met: the �rst four bits have to
equal the value 4 (indicating IPv4), and the second four bits need to
have a value larger or equal to the value 5 (indicating the minimum
length of 5 ⇥ 32 bits = 20 bytes).

The protocols in the di�erent network layers have been imple-
mented using the M���� DSL, and combined into a single Ethernet
2 Frame token. This is the level at which individual transformations
are performed.

4.3 Transform
Once a network packet parses successfully, the values in the parse
graph are transformed if they match a set of constraints. Each con-
straint consists of three parts: a list of network protocols that should
be present in the network packet, the name of the �eld to transform,
and the method to use for transformation. Transformation types
are typically rewriting or (checksum) recalculation.

Examples of transformations used in the prototype are:

• Rewrite the �ipsource� �eld in a network packets contain-
ing IPv4, UDP and DNS.
• Rewrite the �destinationaddress� �eld in a network pack-
ets containing IPv6, UDP and DNS.
• Recalculate the �udpchecksum� �eld of IPv4 packets contain-
ing UDP.

There are several types of rewriting that can be used, including
replacement with a �xed value, up tomore complex transformations
such as application of a �lter or cryptographic function. Transfor-
mations are implemented in Java but assigned and parameterized
through transformation rules applied to the protocol descriptions.

Some of the network protocols parsed by PEF contain check-
sum values which ensure the validity of the network packet: IPv4,
TCP, UDP and ICMPv4 all contain checksums. Since parts of network
packets are altered, the checksums need to be recalculated before
unparsing. The PEF prototype ensures that checksums are recalcu-
lated in all transformed packets. The resulting network capture will
then contain valid network packets that can be analyzed by other
tools.

4.4 Unparse
Every value in a M���� parse graph contains the o�set at which it
occurred in the original data stream, along with the byte values (the
data itself) and an encoding object. A PEF transformation retains
the o�set and the size of the data. Serialization of the transformed
packets is therefore trivial: collect all the values and output them
at their o�sets.

5 PRIVACY-ENHANCED MALWARE
DETECTION

To facilitate experimentation and evaluation, the open-source re-
lease of PEF is con�gured to be usable directly in a typical scenario:
detecting Advanced Persistent Threat-type malware through DNS
requests in network tra�c captures[24]. This relates to a type of
malware that settles on an infected computer for an extended period
and controls the system via received instructions from a command
and control (C&C) server.

To receive commands, the malware must contact a C&C server,
which often involves DNS requests. Intrusion detection systems (IDS)
can be used to analyze network tra�c and detect DNS requests about
suspicious hostnames. This approach poses a problem however,
because the IP address of a device on a network can be directly
related to the person using that device. Analyzing DNS requests
will not only inspect malicious network tra�c, but also expose
legitimate and personally identi�able network tra�c.

Analyzing DNS requests in a network capture is a good use case
for PEF, as it can be con�gured to hide IP source addresses of all
those requests. Transforming original IP addresses can signi�cantly
complicate tracing the request back to the person making those
requests, which enhances privacy of the users. IP addresses can be
transformed in various ways, e.g., by replacing them with an empty
or randomly generated value. This basic approach will create a
problem during malware analysis, because it either seems that all
DNS requests come from the same empty IP address, or multiple re-
quests from the same device all have randomly created IP addresses
and cannot be related to or separated from each other.

863

Model-Driven So�ware Engineering in Practice:
Privacy-Enhanced Filtering of Network Tra�ic ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

5.1 Source Address Pseudonymization
Another option to hide IP addresses in network tra�c is using a
form of format-preserving encryption. This technique ensures that
the input format is encrypted into the same output format, e.g., a 32-
bit IPv4 address is encrypted into a di�erent 32-bit IPv4 address. The
prototype provides an implementation of the FFX mode of operation
for format-preserving encryption, as de�ned by NIST [2]. Applying
FFX to IP addresses pseudonymizes the network tra�c, because the
same IP address will always be transformed into the same adjusted
IP address. This is a useful approach, because it allows a malware
analysis to determine how widespread an infection is on a network
by counting unique IP addresses.

PEF has been con�gured to support this use case. The command
line tool supports parsing PCAP �les, and pseudonymizing IP ad-
dresses found in network packets that contain DNS tra�c. The tool
writes the results to a new PCAP �le, which can be analyzed by
traditional network analysis tools.

The open-source release contains several example PCAP �les
which are used in the test code to verify expected behavior. The
prototype also has experimental support for real-time rewriting of
streams so that it can be included in real-time monitoring solutions
such as an IDS.

6 DISCUSSION
6.1 Technology Choice and Tool Development
PEF is part of an on-going experiment at the Netherlands Forensic
Institute to develop and deploy a model-driven solution to the
problem of maintaining parsers for quickly evolving binary data
formats. As an internal DSL in Java, M���� works well for forensic
software engineers, since the library is just a small dependency and
integrates easily in the Java-based work�ow at the NFI. While IDE
support is not extensive or domain-speci�c, an internal DSL in Java
can quickly be made usable by utilizing relatively simple things
such as factory methods and Javadoc (for intellisense support).

For a framework such as PEF, the eventual technology choice may
end up being di�erent as the target users are not software engineers
but security and privacy o�cers. For these users, installing a Java
development environment, recompiling solutions after modi�cation
and handling dependencies with Maven may prove di�cult. In
this situation, extendingM���� towards a language with its own
concrete syntax and standalone tooling may be necessary.

One of the forerunners of M���� was such a solution, including
a full language[3] and IDE [4]. An important lesson learned in this
area is that in order to make the right technology choices in MDE,
it is not only important to have deep knowledge of the application
domain, but also of the exact usage scenarios of any solution, along
with a complete view of the users. It seems that these are at least
equally important in deciding which approach to use.

6.2 Experiment and Evaluation
We have not provided an extensive empirical evaluation of the
�ltering solution in practical use in this paper. One of the reasons
is that our research focuses on whether the area of network tra�c
�ltering lends itself well to an MDE approach. Our goal is to show
that a working solution can be constructed and that it works well

based on the provided speci�cations and test data. Questions such
as whether IP address pseudonymization and malware detection
via DNS are viable and useful are important, but not in the context
of this paper.

Any evaluation should take two questions into account however:
whether an anonymization scenario can be fully realized using
PEF or a similar approach, but also whether this approach actually
works well for the type of users that need to maintain the solution.

Additionally, as an indication that anonymization tools are not
widely used, it is quite di�cult to publish a data set to test such
tools. The only acceptable way policies typically allow the release
of network tra�c data is after anonymization. This would at the
very least complicate using it as evaluation data to show anything
about the workings of a framework that does similar things.

6.3 Related Work
There is ample research in the area of data description languages
and associated tools such as interpreters and code generators. Fisher
et al.[7] provide an extensive and authoritative overview, includ-
ing a discussion of their PADS language and tools. More recently,
parsing binary data has gained an interest from the security com-
munity through an approach called language-theoretic security[18].
Active projects in this area are binary data parsing toolkits such
as Hammer[22] and Nom[5]. M���� �ts into this as a pragmatic
library that attempts to cover the domain of binary data formats
completely.

Model-driven engineering is a large area both in research and
practice that is continually evaluated in many studies[9, 11, 12, 15].
What sets this research apart from most evaluations is that we
provide a full prototype model-driven solution as open-source soft-
ware con�gured for use in a realistic scenario, facilitating immediate
experimentation.

The transformation pipeline of parse-transform-unparse that PEF
uses is inspired by and similar to those used in other domains.
Examples of such approaches are EASY [13] in source code transfor-
mation, and ETL [23] in data warehousing. Especially in source code
transformation the concern of serializing back to the same valid
structures is common, as the resulting output source code typically
needs to be a valid program according to the same grammar as the
input.

7 CONCLUSION
In this paper we present an open-source prototype implementa-
tion of a model-driven approach to network tra�c �ltering, called
Privacy-Enhanced Filtering. It separates speci�cation of protocols
from parser implementation, allowing many maintenance tasks to
be performed by its direct users, which usually are security and
privacy o�cers. We have based our implementation on prior expe-
riences in developing model-driven solutions in this area, including
building upon our binary data description DSL M����.

The framework comes con�gured for use in a relevant and practi-
cal network tra�c �ltering scenario: pseudonomyzing DNS requests
to enhance end-user privacy when attempting to detect malware
infections on internal networks. The prototype can be installed to
work in tandem with an existing intrusion detection system.

864

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany R. van Dijk, C. Creeten, J. van der Ham, and J. van den Bos

Our implementation demonstrates that it is possible to imple-
ment a network tra�c �ltering framework using declarative data
descriptions, both in general and in the speci�c case when using
theM���� DSL. It shows that data structure description, transfor-
mation rule implementation as well as de�nition of where and how
to apply those transformations can all be cleanly separated.

We intend to expand this work to include more end-user tools,
such as a standalone development environment to integrate the
declarative descriptions with the transformation rules. Additionally,
we plan to continue active development of PEF itself, adding more
protocols and application scenarios, as well as perform several
practical evaluations.

REFERENCES
[1] Mark Allman and Vern Paxson. 2007. Issues and Etiquette Concerning Use of

SharedMeasurement Data. In Proceedings of the 7th ACM SIGCOMMConference on
Internet Measurement (IMC’07). ACM, 135–140. https://doi.org/10.1145/1298306.
1298327

[2] Mihir Bellare, Phillip Rogaway, and Terence Spies. 2010. The FFX mode of
operation for format-preserving encryption. NIST submission 20 (2010).

[3] Jeroen van den Bos and Tijs van der Storm. 2011. Bringing Domain-Speci�c
Languages to Digital Forensics. In Proceedings of the 33rd International Conference
on Software Engineering (ICSE’11). ACM, 671–680. https://doi.org/10.1145/1985793.
1985887

[4] Jeroen van den Bos and Tijs van der Storm. 2013. TRINITY: An IDE for TheMatrix.
In Proceedings of the 29th IEEE International Conference on Software Maintenance
(ICSM’13). IEEE, 520–523. https://doi.org/10.1109/ICSM.2013.86

[5] Geo�roy Couprie. 2015. Nom, A Byte oriented, streaming, Zero copy, Parser
Combinators Library in Rust. In Security and Privacy Workshops (SPW), 2015 IEEE.
IEEE, 142–148. https://doi.org/10.1109/SPW.2015.31

[6] Department of Homeland Security. 2016. The Information Marketplace for Policy
and Analysis of Cyber-risk & Trust (IMPACT). (2016). Retrieved 2 July 2017 from
https://www.impactcybertrust.org/

[7] Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. 2010. The Next 700
Data Description Languages. IT J. ACM 57, 2 (2010), 10:1–10:51. https://doi.org/
10.1145/1667053.1667059

[8] Thomas Gamer, Christoph P. Mayer, and Marcus Schöller. 2008. PktAnon–A
Generic Framework for Pro�le-based Tra�c Anonymization. PIK-Praxis der
Informationsverarbeitung und Kommunikation 31, 2 (2008), 76–81.

[9] John Edward Hutchinson, Mark Rounce�eld, and Jon Whittle. 2011. Model-
Driven Engineering Practices in Industry. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE’11). IEEE, 633–642. https://doi.org/10.
1145/1985793.1985882

[10] Trevor Jim, Yitzhak Mandelbaum, and David Walker. 2010. Semantics and Algo-
rithms for Data-Dependent Grammars. In Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’10).

ACM, 417–430. https://doi.org/10.1145/1706299.1706347
[11] Stefan Karg, Alexander Raschke, Matthias Tichy, and Grischa Liebel. 2016. Model-

Driven Software Engineering in the OpenETCS Project: Project Experiences and
Lessons Learned. In Proceedings of the ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems (MODELS’16). ACM, 238–248.
https://doi.org/10.1145/2976767.2976811

[12] Michael Kläs, Thomas Bauer, Andreas Dereani, Thomas Soderqvist, and Philipp
Helle. 2015. A Large-Scale Technology Evaluation Study: E�ects of Model-
based Analysis and Testing. In Proceedings of the 37th International Conference on
Software Engineering (ICSE’15). IEEE, 119–128. https://doi.org/10.1109/ICSE.2015.
141

[13] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. EASYMeta-programming
with Rascal. In Generative and Transformational Techniques in Software Engineer-
ing III - International Summer School (GTTSE’09), Vol. 6491. Springer, 222–289.
https://doi.org/10.1007/978-3-642-18023-1_6

[14] D. Koukis, S. Antonatos, D. Antoniades, E. P. Markatos, and P. Trimintzios. 2006.
A Generic Anonymization Framework for Network Tra�c. In Proceedings of the
International Conference on Communications (ICC’06), Vol. 5. 2302–2309. https:
//doi.org/10.1109/ICC.2006.255113

[15] Vinay Kulkarni. 2016. Model Driven Development of Business Applications:
A Practitioner’s Perspective. In Proceedings of the 38th International Conference
on Software Engineering (ICSE’16) - Companion Volume. ACM, 260–269. https:
//doi.org/10.1145/2889160.2889251

[16] Y. D. Lin, P. C. Lin, S. H. Wang, I. W. Chen, and Y. C. Lai. 2016. PCAPLib: A
System of Extracting, Classifying, and Anonymizing Real Packet Traces. IEEE
Systems Journal 10, 2 (2016), 520–531. https://doi.org/10.1109/JSYST.2014.2301464

[17] Richard P. Lippmann, David J. Fried, Isaac Graf, Joshua W. Haines, Kristopher R.
Kendall, DavidMcClung, DanWeber, Seth E.Webster, DanWyschogrod, Robert K.
Cunningham, et al. 2000. Evaluating intrusion detection systems: The 1998
DARPA o�-line intrusion detection evaluation. In Proceedings of the DARPA
Information Survivability Conference and Exposition (DISCEX’00), Vol. 2. IEEE,
12–26. https://doi.org/10.1109/DISCEX.2000.821506

[18] Falcon Momot, Sergey Bratus, Sven M. Hallberg, and Meredith L. Patterson. 2016.
The Seven Turrets of Babel: A Taxonomy of LangSec Errors and How to Expunge
Them. In Proceedings of IEEE Cybersecurity Development (SecDev’16). IEEE, 45–52.
https://doi.org/10.1109/SecDev.2016.019

[19] Ruoming Pang, Mark Allman, Vern Paxson, and Jason Lee. 2006. The Devil and
Packet Trace Anonymization. SIGCOMM Comput. Commun. Rev. 36, 1 (2006),
29–38. https://doi.org/10.1145/1111322.1111330

[20] Jon Postel (Ed.). 1981. RFC 791 Internet Protocol - DARPA Internet Program, Protocol
Speci�cation. Internet Engineering Task Force. http://tools.ietf.org/html/rfc791

[21] Douglas C. Schmidt. 2006. Model-Driven Engineering. Computer 39, 2 (2006),
25–31. https://doi.org/10.1109/MC.2006.58

[22] UpstandingHackers. 2012. Hammer, Parser combinators for binary formats in C.
(2012). https://github.com/UpstandingHackers/hammer

[23] Panos Vassiliadis. 2011. A Survey of Extract-Transform-Load Technology. In Inte-
grations of Data Warehousing, Data Mining and Database Technologies - Innovative
Approaches. IGI, 171–199. https://doi.org/10.4018/978-1-60960-537-7.ch008

[24] Guodong Zhao, Ke Xu, Lei Xu, and Bo Wu. 2015. Detecting APT Malware
Infections Based on Malicious DNS and Tra�c Analysis. IEEE Access 3 (2015),
1132–1142. https://doi.org/10.1109/ACCESS.2015.2458581

865

https://doi.org/10.1145/1298306.1298327
https://doi.org/10.1145/1298306.1298327
https://doi.org/10.1145/1985793.1985887
https://doi.org/10.1145/1985793.1985887
https://doi.org/10.1109/ICSM.2013.86
https://doi.org/10.1109/SPW.2015.31
https://www.impactcybertrust.org/
https://doi.org/10.1145/1667053.1667059
https://doi.org/10.1145/1667053.1667059
https://doi.org/10.1145/1985793.1985882
https://doi.org/10.1145/1985793.1985882
https://doi.org/10.1145/1706299.1706347
https://doi.org/10.1145/2976767.2976811
https://doi.org/10.1109/ICSE.2015.141
https://doi.org/10.1109/ICSE.2015.141
https://doi.org/10.1007/978-3-642-18023-1_6
https://doi.org/10.1109/ICC.2006.255113
https://doi.org/10.1109/ICC.2006.255113
https://doi.org/10.1145/2889160.2889251
https://doi.org/10.1145/2889160.2889251
https://doi.org/10.1109/JSYST.2014.2301464
https://doi.org/10.1109/DISCEX.2000.821506
https://doi.org/10.1109/SecDev.2016.019
https://doi.org/10.1145/1111322.1111330
http://tools.ietf.org/html/rfc791
https://doi.org/10.1109/MC.2006.58
https://github.com/UpstandingHackers/hammer
https://doi.org/10.4018/978-1-60960-537-7.ch008
https://doi.org/10.1109/ACCESS.2015.2458581

	Abstract
	1 Introduction
	2 Network Traffic Analysis
	2.1 Challenges around Sharing Network Traffic
	2.2 Automated Anonymization Tools

	3 A Model-Driven Approach
	4 The Privacy-Enhanced Filtering Framework
	4.1 Parsing Binary Data with Metal
	4.2 Parse
	4.3 Transform
	4.4 Unparse

	5 Privacy-Enhanced Malware Detection
	5.1 Source Address Pseudonymization

	6 Discussion
	6.1 Technology Choice and Tool Development
	6.2 Experiment and Evaluation
	6.3 Related Work

	7 Conclusion
	References

